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The genetic basis of shape variation has been investigated for some time by combining the 
methods of geometric morphometrics with the multivariate theory of quantitative genetics. This 
combined approach has been applied extensively in studies of animals (e.g., Klingenberg and 
Leamy 2001; Mezey and Houle 2005; Willmore et al. 2005; Klingenberg et al. 2010), plants 
(Gómez et al. 2009), and humans (Martínez-Abadías et al. 2009b; Martínez-Abadías et al. 
2012). 
The key requirement for quantitative genetic studies of shape is a dataset containing 
morphometric data and information on the genealogical relationships among the individuals. 
From this information, biologically relevant parameters such as the genetic covariance matrix 
can be estimated using individual-based statistical models (e.g., Wilson et al. 2010). The data for 
our study were from the population of Hallstatt (Austria), where identified skulls and records of 
genealogical relationships are available. This population has been used for quantitative genetic 
studies of traditional morphometric traits (Carson 2006; Martínez-Abadías et al. 2009a) and also 
with geometric morphometrics (Martínez-Abadías et al. 2009b; Martínez-Abadías et al. 2012). 
Alternative data sources are large-scale medical surveys, which also have been used in 
analyses of traditional morphometric traits (Sherwood et al. 2008). 
Estimates of selection on shape can be obtained by regression of fitness measures on shape. 
Such studies have been done in plants (e.g., Herrera 1993; Gómez et al. 2006), but not yet in 
animals or humans. 
Here, we use the estimate of the genetic covariance matrix and estimated selection on skull 
shape to predict the expected response to selection, and we compare this prediction to the 
observed secular change over the approximately 150-year period covered by the data. 

Quantitative genetics of human shape 

Estimating selection on skull shape 
Selection was estimated using four different fitness measures: (1) a composite measure of 
fitness, lambda, taking into account the number of children and the parental age at birth of the 
children, (2) fertility, the total number of children, (3) lifetime reproductive success, the number of 
children surviving to adulthood, and (4) longevity. For each fitness measure, linear and nonlinear 
selection was estimated (Blows and Brooks 2003) and statistical significance was tested with a 
permutation approach. 

Predicted responses to 
selection were similar for 
all four fitness measures 
and featured relative shifts 
of landmarks that 
correspond to those in the 
selection gradients. 

Quantitative genetic analyses of shape variation in humans hold considerable promise for 
research in evolutionary anthropology. They can supply crucial information in various contexts, 
such as inferences of past selection or neutral variation, adaptation, and population structure. 
Using the complete information from geometric morphometric analyses is feasible with currently 
available methods, as published studies have shown (Martínez-Abadías et al. 2009b; Martínez-
Abadías et al. 2012). 
Analyses of selection are feasible whenever data on shape and a measure of fitness are 
available. Such analyses can provide valuable extra information that supplement indirect 
inferences of past selection or genetic drift or genomic analyses of selection. 
Fully multivariate methods for mapping quantitative trait loci (QTL) of shape are also available 
(Klingenberg et al. 2001; Workman et al. 2002; Klingenberg et al. 2004), but are yet to be 
applied to human populations. In humans, QTL analyses of craniofacial traits have been 
conducted based on traditional morphometrics (Sherwood et al. 2011), but studies using 
geometric morphometrics are yet to be done.  

Nonlinear selection was 
not statistically 
significant for any of the 
fitness measures, 
indicating that there is no 
stabilizing selection. 
Significant linear 
selection was found and 
the shape features 
favoured by selection 
(selection gradients) 
were similar for all four 
fitness measures. 
 

For each skull, 29 anatomical landmarks were digitized in three dimensions with a MicroScribe 
digitizer (full details in Martínez-Abadías et al. 2012). 
Shape information was extracted with a Procrustes superimposition. All geometric morphometric 
analyses were carried out in MorphoJ (Klingenberg 2011). 
The genetic covariance matrix was estimated for the first 32 principal components of the shape 
variation in the sample using the Wombat software (Meyer 2007). The resulting matrix was 
rotated back into the coordinate system of the landmark coordinates (full details in Martínez-
Abadías et al. 2012). 

Conclusions and outlook 

Quantitative genetic variation 
and selection on skull shape in humans 
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The skulls from Hallstatt (Austria) provide a unique opportunity for studying the genetics of 
cranial variation. Our sample includes 390 individuals buried on the Catholic churchyard of the 
town. As a tradition, the skeletal remains were exhumed and various decorations were painted 
on the skulls. Most decorations include the name of the deceased, so that the skulls can be 
linked to church records.  

The data 

The response to selection was predicted with the multivariate breeders’ equation (Lande 1979), 
using the genetic covariance matrix and selection gradients obtained for the Hallstatt population. 

Predicted response to selection 

The pattern of secular change was estimated by a 
regression of shape on birth year (Drake and 
Klingenberg 2008; Weisensee and Jantz 2011) 
This pattern is quite different from the patterns of 
predicted response to selection. There can be 
several possible reasons for this discrepancy. First, it 
is likely that selection not only affects skull shape, but 
also other variables that are not included in our 
estimate of selection. Second, environmental factors 
such as nutrition, care for children and medical 
provision may have changed during the period 
covered by our data. Third, processes such as 
population turnover also might produce changes that 
are different from those induced by selection. 

Secular change of cranial shape 
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