
Morpheus_JOGL
Examples for OpenGL/GLSL programming in Java/JOGL.

Version 20171101

Copyright © 2017 Dennis E. Slice

1of36

Morpheus_JOGL
Examples for OpenGL/GLSL programming in Java/JOGL.

Version 20171101

Copyright © 2017 Dennis E. Slice

1of36

Table of Contents
PREAMBLE..3
CONTACT INFO...3
DISCLAIMER...3
ACKNOWLEDGEMENTS...3
INTRODUCTION...4
INHERITANCE STRUCTURE...8
PROGRAM LIBRARIES AND CLASSES..9
APPENDICES...21

CODE, JAVADOC, AND COMMENT LINES..21
CONSTANTS, TYPEDEFS, & VARIABLES..23
METHODS..28
DOCUMENTATION – Morpheus_eProbe...31

Installation..31
Program Requirements...31
Execution..31

Source..33
JavaDoc...34
Note to Mac OS X Users...34

2of36

Table of Contents
PREAMBLE..3
CONTACT INFO...3
DISCLAIMER...3
ACKNOWLEDGEMENTS...3
INTRODUCTION...4
INHERITANCE STRUCTURE...8
PROGRAM LIBRARIES AND CLASSES..9
APPENDICES...21

CODE, JAVADOC, AND COMMENT LINES..21
CONSTANTS, TYPEDEFS, & VARIABLES..23
METHODS..28
DOCUMENTATION – Morpheus_eProbe...31

Installation..31
Program Requirements...31
Execution..31

Source..33
JavaDoc...34
Note to Mac OS X Users...34

2of36

PREAMBLE
Morpheus_JOGL is a Java application designed to provide simple, working examples of OpenGL
programming in the Java environment using the JOGL binding (http://jogamp.org/). It is based directly
on Morpheus_eProbe and provides the same features as that program in addition to the new graphics
examples. The methods developed in this program are expected to be used in the development of new
graphics capabilities for the morphometrics program, Morpheus et al. Do let us know if you find the
program useful in any way by sending a message in the requested format to the contact address below.

The program is provided free of charge and with no warranty whatsoever. I also include the source
code under the Apache 2.0 open source license (1) and JavaDoc documentation.
(1) Open source licenses are bewildering conglomerations of legalese. I have no idea what these really mean, but my
intention is to allow you the right to use the source code for your own private purposes and/or freely distributed software so
long as proper credit is given. You can read the Apache license here: https://www.apache.org/licenses/LICENSE-2.0

CONTACT INFO
Please address comments, bug reports, ecnomia, etc. to:

morphlab@sc.fsu.edu

And please use the subject line:

Morpheus_JOGL: *

Where ‘*’ is replaced by text indicating the nature of your communication.

DISCLAIMER
And again, this program is provided “as is” and is not guaranteed to do anything whatsoever. Use at
your own risk.

ACKNOWLEDGEMENTS
Morpheus_JOGL benefited greatly from work and discussions by others. Detelina Stoyanova wrote a
JOGL-based library for me to incorporate into the main Morpheus_et_al program. This project, in fact,
was designed to give me the necessary understanding to incorporate that library into the Morpheus
program. Whereas, Dr. Stoyanova started from nothing, I have made extensive use of her working code
examples. This was particularly important for text rendering and lighting. We both also benefitted
greatly from the discussions on the JOGL forum, http://forum.jogamp.org/, on the main JOGAMP site,
http://jogamp.org/. Of course, any and all mistakes in the code are of my own doing.

3of36

PREAMBLE
Morpheus_JOGL is a Java application designed to provide simple, working examples of OpenGL
programming in the Java environment using the JOGL binding (http://jogamp.org/). It is based directly
on Morpheus_eProbe and provides the same features as that program in addition to the new graphics
examples. The methods developed in this program are expected to be used in the development of new
graphics capabilities for the morphometrics program, Morpheus et al. Do let us know if you find the
program useful in any way by sending a message in the requested format to the contact address below.

The program is provided free of charge and with no warranty whatsoever. I also include the source
code under the Apache 2.0 open source license (1) and JavaDoc documentation.
(1) Open source licenses are bewildering conglomerations of legalese. I have no idea what these really mean, but my
intention is to allow you the right to use the source code for your own private purposes and/or freely distributed software so
long as proper credit is given. You can read the Apache license here: https://www.apache.org/licenses/LICENSE-2.0

CONTACT INFO
Please address comments, bug reports, ecnomia, etc. to:

morphlab@sc.fsu.edu

And please use the subject line:

Morpheus_JOGL: *

Where ‘*’ is replaced by text indicating the nature of your communication.

DISCLAIMER
And again, this program is provided “as is” and is not guaranteed to do anything whatsoever. Use at
your own risk.

ACKNOWLEDGEMENTS
Morpheus_JOGL benefited greatly from work and discussions by others. Detelina Stoyanova wrote a
JOGL-based library for me to incorporate into the main Morpheus_et_al program. This project, in fact,
was designed to give me the necessary understanding to incorporate that library into the Morpheus
program. Whereas, Dr. Stoyanova started from nothing, I have made extensive use of her working code
examples. This was particularly important for text rendering and lighting. We both also benefitted
greatly from the discussions on the JOGL forum, http://forum.jogamp.org/, on the main JOGAMP site,
http://jogamp.org/. Of course, any and all mistakes in the code are of my own doing.

3of36

http://jogamp.org/
http://forum.jogamp.org/
mailto:morphlab@sc.fsu.edu
https://www.apache.org/licenses/LICENSE-2.0

INTRODUCTION
Morpheus_JOGL is an application intended to provide simple, step-by-step examples of OpenGL
programming in the Java programming environment. Basic setup and simple drawing is done in the
first dialog, Morpheus_JOGL_dlg01_triangle. Subsequent dialogs implement but one or two new
features or methods while inheriting the capabilities of those that came before. Each dialog, then,
contains only the minimal code to implement the new features so their function can be seen and studied
in isolation. Access to OpenGL from within Java is provided by JOGL. That software and more
information about it can be found at https://jogamp.org/, and appropriate JOGL libraries must be
downloaded and provided to the program in order for it to compile and run. The requisite libraries are
discussed below.

This approach was not entirely successful due to the nature of inheritance in Java. Descendent classes
actually share the variables in ancestor classes. That is, if a background variable is declared in one
class, all descendent classes share that same variable – change background color for one of these
descendants and it changes for all. To address this, the code uses get(...)/set(...) methods to
retrieve or specify the value of a variable. Each dialog has its own unique variable, and overrides the
get(...)/set(...) functions to work with the local variable. The downside of this is that an
increasing proportion of the dialog code is devoted to making local copies of these variables. For
instance, in the final dialog, Morpheus_JOGL_dlg15_image, there are over 1600 lines of code,
comments, and JavaDoc statements, of which just over 900 are devoted to declaring local variables and
overriding their get(...)/set(...)
functions. This leaves about 700 lines
devoted to rendering images as texture
either on a rectangle or onto the faces of a
cube and providing some degree of new
user interaction with that rendering
(changing from rectangle to cube
rendering).

Given the above, the program should still
be useful to some people. Figure 1 shows
the running program. The “JOGL\OpenGL
Demo|Hot keys” selection has already been
made, and hot keys are displayed in the
program text area along with the dialogs
with which the features are first activated.
The dropdown menu shows the dialogs
named for their main features. Figure 2
shows the program with all dialogs open
and running. Dialogs are shown left-to-
right, top-to-bottom after the primary
program window.

The first dialog,
Morpheus_JOGL_dlg01_triangle, sets up
the OpenGL environment and draws an

4of36

Figure 1: The main Morpheus_JOGL window showing the
output of the "JOGL/OpenGL Demo|Hot keys" menu
choice.

INTRODUCTION
Morpheus_JOGL is an application intended to provide simple, step-by-step examples of OpenGL
programming in the Java programming environment. Basic setup and simple drawing is done in the
first dialog, Morpheus_JOGL_dlg01_triangle. Subsequent dialogs implement but one or two new
features or methods while inheriting the capabilities of those that came before. Each dialog, then,
contains only the minimal code to implement the new features so their function can be seen and studied
in isolation. Access to OpenGL from within Java is provided by JOGL. That software and more
information about it can be found at https://jogamp.org/, and appropriate JOGL libraries must be
downloaded and provided to the program in order for it to compile and run. The requisite libraries are
discussed below.

This approach was not entirely successful due to the nature of inheritance in Java. Descendent classes
actually share the variables in ancestor classes. That is, if a background variable is declared in one
class, all descendent classes share that same variable – change background color for one of these
descendants and it changes for all. To address this, the code uses get(...)/set(...) methods to
retrieve or specify the value of a variable. Each dialog has its own unique variable, and overrides the
get(...)/set(...) functions to work with the local variable. The downside of this is that an
increasing proportion of the dialog code is devoted to making local copies of these variables. For
instance, in the final dialog, Morpheus_JOGL_dlg15_image, there are over 1600 lines of code,
comments, and JavaDoc statements, of which just over 900 are devoted to declaring local variables and
overriding their get(...)/set(...)
functions. This leaves about 700 lines
devoted to rendering images as texture
either on a rectangle or onto the faces of a
cube and providing some degree of new
user interaction with that rendering
(changing from rectangle to cube
rendering).

Given the above, the program should still
be useful to some people. Figure 1 shows
the running program. The “JOGL\OpenGL
Demo|Hot keys” selection has already been
made, and hot keys are displayed in the
program text area along with the dialogs
with which the features are first activated.
The dropdown menu shows the dialogs
named for their main features. Figure 2
shows the program with all dialogs open
and running. Dialogs are shown left-to-
right, top-to-bottom after the primary
program window.

The first dialog,
Morpheus_JOGL_dlg01_triangle, sets up
the OpenGL environment and draws an

4of36

Figure 1: The main Morpheus_JOGL window showing the
output of the "JOGL/OpenGL Demo|Hot keys" menu
choice.

https://jogamp.org/

equilateral white triangle on a black background. The second dialog adds a color background and adds
color to the vertices of the triangle, which are interpolated by OpenGL into the interior of the triangle.
The third dialog adds animation that gives the appearance of the triangle spinning. The fourth corrects
the drawing of the triangle for the aspect (short,wide v. tall,narrow) of the window. The fifth dialog
renders a cube, which must be specified as a series of triangles, and the sixth adds a choice between
perspective (default) and orthogonal projection. The seventh dialog enhances the geometry to show a
smooth sphere (again represented as numerous triangles) and adds lighting effects to the rendering. We
simply add reading in a more complicated surface from a file and rendering it in the eighth dialog. Text
is added to the scene in dialog nine, and mouse control in dialog ten.

The program inheritance trifurcates after Morpheus_JOGL_dlg10_mouse. Dialog eleven and twelve
descend directly from this dialog and add the display of points and line segments. This is a distinct
branch because the effect of point/line rendering is achieved simply through the manipulation of
rendering options – a set of random vertices can be rendered as individual points or one can draw lines
between pairs of such points. The second branch of the trifurcation has dialogs thirteen and fourteen

5of36

Figure 2: The main Morpheus_JOGL program window and all demo
dialogs. Dialog order (1-15) and increasing capabilities are illustrated
from left-to-right, top-to-bottom.

equilateral white triangle on a black background. The second dialog adds a color background and adds
color to the vertices of the triangle, which are interpolated by OpenGL into the interior of the triangle.
The third dialog adds animation that gives the appearance of the triangle spinning. The fourth corrects
the drawing of the triangle for the aspect (short,wide v. tall,narrow) of the window. The fifth dialog
renders a cube, which must be specified as a series of triangles, and the sixth adds a choice between
perspective (default) and orthogonal projection. The seventh dialog enhances the geometry to show a
smooth sphere (again represented as numerous triangles) and adds lighting effects to the rendering. We
simply add reading in a more complicated surface from a file and rendering it in the eighth dialog. Text
is added to the scene in dialog nine, and mouse control in dialog ten.

The program inheritance trifurcates after Morpheus_JOGL_dlg10_mouse. Dialog eleven and twelve
descend directly from this dialog and add the display of points and line segments. This is a distinct
branch because the effect of point/line rendering is achieved simply through the manipulation of
rendering options – a set of random vertices can be rendered as individual points or one can draw lines
between pairs of such points. The second branch of the trifurcation has dialogs thirteen and fourteen

5of36

Figure 2: The main Morpheus_JOGL program window and all demo
dialogs. Dialog order (1-15) and increasing capabilities are illustrated
from left-to-right, top-to-bottom.

being derived from the mouse dialog. These are fundamentally different in that prior dialogs rendered
single geometries – a triangle, a cube, a sphere, a skull surface. Dialog thirteen renders a number of
spheres of random size at random locations (within a unit sphere) of random colors. This is done by
creating a single set of vertices for a sphere, but defining arrays of colors, locations, and scaling factors
to give each a unique appearance. Dialog fourteen does the same thing for rods (closed cylinders), but
the computations become more complicated as each rod has to be scaled in the correct direction,
rotated to match the orientation of the desired line segment, and moved to the desired location.

Finally, Morpheus_JOGL_dlg15_image, implements the display of images. These are handled as
texture. An image is read in to an OpenGL texture data structure. Vertices are then assigned coordinates
within the texture, and OpenGL interpolates the texture coordinates for each pixel. Texture color values
are return from the texture using the built-in “sampler”. Texture coordinates for the vertices are
assumed to range from (0, 0) to (1, 1) in both directions. Hence, some care must be taken to ensure
proper image aspect, if that is desired.

The program documentation that you are reading at this moment is, by design, rather scant. Instead, the
program is more-or-less self-documenting through JavaDoc-ing of all new methods, extensive code
comments, and long, explicit variable names. For consistency (or sloth if you wish to read it that way),
methods and variables are commented only when they are first introduced or when they are overridden.
It was just too hard to try to coordinate identical comments over fifteen dialog source files.

KNOWN ISSUES

The program is not without its flaws – they may, in fact, be numerous,. Here are the known ones.

BUG: Off-origin text is not precisely positioned. This just requires, I think, working through and
adjusting for the effects of a number of transformations, but other professional deadlines prevent me
from doing this at this time.

INEFFICIENCY: All geometry is passed for rendering as explicit vertex coordinates. It can be more
memory-efficient to store the vertex coordinates once and pass faces as indices, instead of actual vertex
coordinates, using glDrawElements() in place of glDrawArrays(). Doing so could greatly reduce
storage for large geometries with redundant use of vertices in faces, but would require, I think, vertex
colors and normals to be constant. To keep the program as simple as possible for downstream
inheritance, this was not done. The only geometries likely to see a meaningful efficiency improvement
are the external surface and sphere. I might possibly add a dialog using this feature at a later time.

USEFUL REFERENCES

Besides the internet and individuals, much of the OpenGL and JOGL-specific knowledge used to build
the program were obtained from:

Shreiner, Sellers, Kessenich, Licea-Kane. 2013. OpenGL Programming Guide Eighth Edition.
Addison-Wesley.

Wolff. 2011. OpenGL 4.0 Shading Language Cookbook. Packt Publishing.

6of36

being derived from the mouse dialog. These are fundamentally different in that prior dialogs rendered
single geometries – a triangle, a cube, a sphere, a skull surface. Dialog thirteen renders a number of
spheres of random size at random locations (within a unit sphere) of random colors. This is done by
creating a single set of vertices for a sphere, but defining arrays of colors, locations, and scaling factors
to give each a unique appearance. Dialog fourteen does the same thing for rods (closed cylinders), but
the computations become more complicated as each rod has to be scaled in the correct direction,
rotated to match the orientation of the desired line segment, and moved to the desired location.

Finally, Morpheus_JOGL_dlg15_image, implements the display of images. These are handled as
texture. An image is read in to an OpenGL texture data structure. Vertices are then assigned coordinates
within the texture, and OpenGL interpolates the texture coordinates for each pixel. Texture color values
are return from the texture using the built-in “sampler”. Texture coordinates for the vertices are
assumed to range from (0, 0) to (1, 1) in both directions. Hence, some care must be taken to ensure
proper image aspect, if that is desired.

The program documentation that you are reading at this moment is, by design, rather scant. Instead, the
program is more-or-less self-documenting through JavaDoc-ing of all new methods, extensive code
comments, and long, explicit variable names. For consistency (or sloth if you wish to read it that way),
methods and variables are commented only when they are first introduced or when they are overridden.
It was just too hard to try to coordinate identical comments over fifteen dialog source files.

KNOWN ISSUES

The program is not without its flaws – they may, in fact, be numerous,. Here are the known ones.

BUG: Off-origin text is not precisely positioned. This just requires, I think, working through and
adjusting for the effects of a number of transformations, but other professional deadlines prevent me
from doing this at this time.

INEFFICIENCY: All geometry is passed for rendering as explicit vertex coordinates. It can be more
memory-efficient to store the vertex coordinates once and pass faces as indices, instead of actual vertex
coordinates, using glDrawElements() in place of glDrawArrays(). Doing so could greatly reduce
storage for large geometries with redundant use of vertices in faces, but would require, I think, vertex
colors and normals to be constant. To keep the program as simple as possible for downstream
inheritance, this was not done. The only geometries likely to see a meaningful efficiency improvement
are the external surface and sphere. I might possibly add a dialog using this feature at a later time.

USEFUL REFERENCES

Besides the internet and individuals, much of the OpenGL and JOGL-specific knowledge used to build
the program were obtained from:

Shreiner, Sellers, Kessenich, Licea-Kane. 2013. OpenGL Programming Guide Eighth Edition.
Addison-Wesley.

Wolff. 2011. OpenGL 4.0 Shading Language Cookbook. Packt Publishing.

6of36

IMAGE CREDITS

The image of the skull displayed in Morpheus_JOGL_dlg08_surface and subsequent dialogs was
generated from data available as part of the publication:

Pomidor, Benjamin J., Jana Makedonska, and Dennis E. Slice. “A Landmark-Free Method for Three-
Dimensional Shape Analysis.” PLOS ONE 11, no. 3 (March 8, 2016): e0150368.
https://doi.org/10.1371/journal.pone.0150368.

The image used in Morpheus_JOGL_dlg15_image is a frame from a hand-colored print of Georges
Méliès's 1902 film Le voyage dans la lune. It is available for unrestricted reuse from:
https://commons.wikimedia.org/wiki/File:Melies_color_Voyage_dans_la_lune.jpg

7of36

IMAGE CREDITS

The image of the skull displayed in Morpheus_JOGL_dlg08_surface and subsequent dialogs was
generated from data available as part of the publication:

Pomidor, Benjamin J., Jana Makedonska, and Dennis E. Slice. “A Landmark-Free Method for Three-
Dimensional Shape Analysis.” PLOS ONE 11, no. 3 (March 8, 2016): e0150368.
https://doi.org/10.1371/journal.pone.0150368.

The image used in Morpheus_JOGL_dlg15_image is a frame from a hand-colored print of Georges
Méliès's 1902 film Le voyage dans la lune. It is available for unrestricted reuse from:
https://commons.wikimedia.org/wiki/File:Melies_color_Voyage_dans_la_lune.jpg

7of36

https://doi.org/10.1371/journal.pone.0150368

INHERITANCE STRUCTURE
Morpheus_JOGL provides fifteen dialogs illustrating incremental aspects of OpenGL programming.
Each dialog after the first inherits the capabilities of those above and adds one or two new features.
This inheritance is linear from the first, Morpheus_JOGL_dlg01_triangle, through the tenth,
Morpheus_JOGL_dlg10_mouse. At that point, the inheritance trifurcates. The first branch begins with
Morpheus_JOGL_dlg11_points. This class changes how vertices are generated – random points within
a unit sphere, and adjusts the rendering mode to draw these vertices as points.
Morpheus_JOGL_dlg12_lines is a direct descendent of this class and further changes the rendering
mode to draw simple lines between the pairs of random points. The second branch begins with
Morpheus_JOGL_dlg13_spheres to provide a more elegant representation of points in space as spheres.
Here, the vertices and faces for a smooth sphere are generated. Then, a number of parameters for
different spheres are generated, each with its own location, scaling, and color.
Morpheus_JOGL_dlg14_rods extends this class to render rods (closed cylinders) between random
points within a unit sphere. This requires more complicated mathematics to compute appropriate
scaling, location, and orientation terms to place the common rod geometry to extend from one random
point to another. Finally, Morpheus_JOGL_dlg15_image requires new code to read in images as
textures and provide coordinates mapping vertex points into the image. This also requires new vertex
and fragment and fragment shaders to properly sample the texture for screen rendering. Below is an
illustration of the inheritance pattern of all of the dialogs.

Morpheus_eProbe_JOGL_dlg01_triangle
⇓

Morpheus_eProbe_JOGL_dlg02_color
⇓

Morpheus_eProbe_JOGL_dlg03_animation
⇓

Morpheus_eProbe_JOGL_dlg04_aspect
⇓

Morpheus_eProbe_JOGL_dlg05_cube
⇓

Morpheus_eProbe_JOGL_dlg06_mvpMx
⇓

Morpheus_eProbe_JOGL_dlg07_lighting
⇓

Morpheus_eProbe_JOGL_dlg08_surface
⇓

Morpheus_eProbe_JOGL_dlg09_text
⇓

Morpheus_eProbe_JOGL_dlg10_mouse ⇒ Morpheus_eProbe_JOGL_dlg11_points
⇓ ⇓ ⇓
⇓ ⇓ Morpheus_eProbe_JOGL_dlg12_lines
⇓ ⇓
⇓ Morpheus_eProbe_JOGL_dlg13_spheres
⇓ ⇓
⇓ Morpheus_eProbe_JOGL_dlg14_rods
⇓

Morpheus_eProbe_JOGL_dlg15_image

8of36

INHERITANCE STRUCTURE
Morpheus_JOGL provides fifteen dialogs illustrating incremental aspects of OpenGL programming.
Each dialog after the first inherits the capabilities of those above and adds one or two new features.
This inheritance is linear from the first, Morpheus_JOGL_dlg01_triangle, through the tenth,
Morpheus_JOGL_dlg10_mouse. At that point, the inheritance trifurcates. The first branch begins with
Morpheus_JOGL_dlg11_points. This class changes how vertices are generated – random points within
a unit sphere, and adjusts the rendering mode to draw these vertices as points.
Morpheus_JOGL_dlg12_lines is a direct descendent of this class and further changes the rendering
mode to draw simple lines between the pairs of random points. The second branch begins with
Morpheus_JOGL_dlg13_spheres to provide a more elegant representation of points in space as spheres.
Here, the vertices and faces for a smooth sphere are generated. Then, a number of parameters for
different spheres are generated, each with its own location, scaling, and color.
Morpheus_JOGL_dlg14_rods extends this class to render rods (closed cylinders) between random
points within a unit sphere. This requires more complicated mathematics to compute appropriate
scaling, location, and orientation terms to place the common rod geometry to extend from one random
point to another. Finally, Morpheus_JOGL_dlg15_image requires new code to read in images as
textures and provide coordinates mapping vertex points into the image. This also requires new vertex
and fragment and fragment shaders to properly sample the texture for screen rendering. Below is an
illustration of the inheritance pattern of all of the dialogs.

Morpheus_eProbe_JOGL_dlg01_triangle
⇓

Morpheus_eProbe_JOGL_dlg02_color
⇓

Morpheus_eProbe_JOGL_dlg03_animation
⇓

Morpheus_eProbe_JOGL_dlg04_aspect
⇓

Morpheus_eProbe_JOGL_dlg05_cube
⇓

Morpheus_eProbe_JOGL_dlg06_mvpMx
⇓

Morpheus_eProbe_JOGL_dlg07_lighting
⇓

Morpheus_eProbe_JOGL_dlg08_surface
⇓

Morpheus_eProbe_JOGL_dlg09_text
⇓

Morpheus_eProbe_JOGL_dlg10_mouse ⇒ Morpheus_eProbe_JOGL_dlg11_points
⇓ ⇓ ⇓
⇓ ⇓ Morpheus_eProbe_JOGL_dlg12_lines
⇓ ⇓
⇓ Morpheus_eProbe_JOGL_dlg13_spheres
⇓ ⇓
⇓ Morpheus_eProbe_JOGL_dlg14_rods
⇓

Morpheus_eProbe_JOGL_dlg15_image

8of36

PROGRAM LIBRARIES AND CLASSES
This section describes the functionality of each of the Java classes used in the program including those
carried over without modification from Morpheus_eProbe. The dialog descriptions outlines the features
implemented in each dialog and, when appropriate, aspects of the vertex and fragment shaders used.
When no new capabilities are required, a dialog can use previously developed shaders, and this is noted
in the description. Furthermore, the descriptions note any hot keys introduced with each dialog and
changes to the program defaults for the features connected to these hot keys. The program was
developed using Netbeans 8.2, and source includes the .form file that handles the visual editing of Java
components such as menus, text areas, etc.

Required libraries...

Morpheus_JOGL uses the JOGL binding to access OpenGL features. As such, the associated libraries
are required to compile the program (they are included automatically in the distribution to run the
program). In addition, the “eProbe” part of the program requires libraries associated with Java3D to
compile, but these are not necessary for the OpenGL demos that are the focus of this program. Java3D-
related methods can easily be deleted from the Morpheus_JOGL_00_startup.java class to remove this
dependency. The necessary JOGL and Java3D libraries can be obtained from
http://jogamp.org/jogl/www/. Those used to build the program are all included in the ./lib directory
distributed with Morpheus_JOGL.

JOGL – the OpenGL Java bindings. Files with the text “linux”, “macosx”, and “windows” provides
support for Linux, OS X, and MS Windows operating systems, respectively. Others are non-OS-
specific libraries. As written, text capabilities require the font file to be in the “atomic” subdirectory.

./atomic/jogl-fonts-p0.jar
gluegen-rt-natives-linux-amd64.jar
gluegen-rt-natives-linux-i586.jar
gluegen-rt-natives-macosx-universal.jar
gluegen-rt-natives-windows-amd64.jar
gluegen-rt-natives-windows-i586.jar
gluegen-rt.jar
jogl-all-natives-linux-amd64.jar
jogl-all-natives-linux-i586.jar
jogl-all-natives-macosx-universal.jar
jogl-all-natives-windows-amd64.jar
jogl-all-natives-windows-i586.jar
jogl-all.jar

JAVA3D – the Java3D libraries. Required for full “eProbe” functionality, but not required for the
OpenGL demos.

j3dcore.jar
j3dutils.jar
vecmath.jar

Morpheus_JOGL_00_startup.java – the initial class that contains the main(...) function to
initialize and display the main program window. It also contains a commented out function to open all
dialogs and tile them on screen. If the fullscreen parameter passed to that function is true, the
main window and the fifteen dialogs are tiled to fill the entire screen to the extent possible. If this

9of36

PROGRAM LIBRARIES AND CLASSES
This section describes the functionality of each of the Java classes used in the program including those
carried over without modification from Morpheus_eProbe. The dialog descriptions outlines the features
implemented in each dialog and, when appropriate, aspects of the vertex and fragment shaders used.
When no new capabilities are required, a dialog can use previously developed shaders, and this is noted
in the description. Furthermore, the descriptions note any hot keys introduced with each dialog and
changes to the program defaults for the features connected to these hot keys. The program was
developed using Netbeans 8.2, and source includes the .form file that handles the visual editing of Java
components such as menus, text areas, etc.

Required libraries...

Morpheus_JOGL uses the JOGL binding to access OpenGL features. As such, the associated libraries
are required to compile the program (they are included automatically in the distribution to run the
program). In addition, the “eProbe” part of the program requires libraries associated with Java3D to
compile, but these are not necessary for the OpenGL demos that are the focus of this program. Java3D-
related methods can easily be deleted from the Morpheus_JOGL_00_startup.java class to remove this
dependency. The necessary JOGL and Java3D libraries can be obtained from
http://jogamp.org/jogl/www/. Those used to build the program are all included in the ./lib directory
distributed with Morpheus_JOGL.

JOGL – the OpenGL Java bindings. Files with the text “linux”, “macosx”, and “windows” provides
support for Linux, OS X, and MS Windows operating systems, respectively. Others are non-OS-
specific libraries. As written, text capabilities require the font file to be in the “atomic” subdirectory.

./atomic/jogl-fonts-p0.jar
gluegen-rt-natives-linux-amd64.jar
gluegen-rt-natives-linux-i586.jar
gluegen-rt-natives-macosx-universal.jar
gluegen-rt-natives-windows-amd64.jar
gluegen-rt-natives-windows-i586.jar
gluegen-rt.jar
jogl-all-natives-linux-amd64.jar
jogl-all-natives-linux-i586.jar
jogl-all-natives-macosx-universal.jar
jogl-all-natives-windows-amd64.jar
jogl-all-natives-windows-i586.jar
jogl-all.jar

JAVA3D – the Java3D libraries. Required for full “eProbe” functionality, but not required for the
OpenGL demos.

j3dcore.jar
j3dutils.jar
vecmath.jar

Morpheus_JOGL_00_startup.java – the initial class that contains the main(...) function to
initialize and display the main program window. It also contains a commented out function to open all
dialogs and tile them on screen. If the fullscreen parameter passed to that function is true, the
main window and the fifteen dialogs are tiled to fill the entire screen to the extent possible. If this

9of36

http://jogamp.org/jogl/www/

parameter is false, then the height of the screen is filled, but the tiled windows are square. This was
included to easily develop images for the documentation (Figure 2 above) and to check that all dialogs
were functioning properly after programming changes.

Morpheus_JOGL_01_Java.java – a class directly carried over from Morpheus_eProbe that collects
non-graphical system information and has a function that can set graphical information strings from
classes that do support graphics.

Morpheus_JOGL_02_JOGL.java – a class from Morpheus_eProbe to test for the existence of the
Java OpenGL binding, JOGL. It requires the main eProbe Java class be passed in its constructor so it
can set the proper parameter strings.

Morpheus_JOGL_03_Java3D.java – a class from Morpheus_eProbe to test for the existence of the
Java 3D API. It requires the main eProbe Java class be passed in its constructor so it can set the proper
parameter strings.

Morpheus_JOGL_04_Jframe.java – the main Morpheus_JOGL program window. It provides a text
output area for reporting system information and Hot key occurrence and usage. There is an
associated .form file that is used by Netbeans for visual Java control editing.

Morpheus_JOGL_dlg01_triangle.java – draws a white, equilateral
triangle on a black background. this first dialog provides the most basic
capabilities for OpenGL/JOGL programming. It defines some generally
useful constants and the first set of class-specific variables and their
get(...)/set(...) methods that will be overridden in descendent
dialogs so that each level of the lineage has its own unique variables –
the body of the code uses the get(...)/set(...) functions for
access to them.

As in all dialogs, there is a main(...) function defined that allows
the standalone running of the dialog independently of the main
Morpheus_JOGL – this is very handy for debugging.

This class defines an initOverrides(...) method that is called after dialog creation – Java
strongly discourages the use of overridden functions in class constructors. Among other things, this
function creates the GLCanvas object, which is what provides access via JOGL to the OpenGL system.
This is added as the drawing area for the dialog.

The setupDialog(...) method is called after initOverrides(...) to position and display
the dialog.

The generateGeometry(...) method generates the vertex coordinates and whatever else might
be needed for a displayed graphical object in later, overridden functions. Here, the coordinates are of an

10of36

parameter is false, then the height of the screen is filled, but the tiled windows are square. This was
included to easily develop images for the documentation (Figure 2 above) and to check that all dialogs
were functioning properly after programming changes.

Morpheus_JOGL_01_Java.java – a class directly carried over from Morpheus_eProbe that collects
non-graphical system information and has a function that can set graphical information strings from
classes that do support graphics.

Morpheus_JOGL_02_JOGL.java – a class from Morpheus_eProbe to test for the existence of the
Java OpenGL binding, JOGL. It requires the main eProbe Java class be passed in its constructor so it
can set the proper parameter strings.

Morpheus_JOGL_03_Java3D.java – a class from Morpheus_eProbe to test for the existence of the
Java 3D API. It requires the main eProbe Java class be passed in its constructor so it can set the proper
parameter strings.

Morpheus_JOGL_04_Jframe.java – the main Morpheus_JOGL program window. It provides a text
output area for reporting system information and Hot key occurrence and usage. There is an
associated .form file that is used by Netbeans for visual Java control editing.

Morpheus_JOGL_dlg01_triangle.java – draws a white, equilateral
triangle on a black background. this first dialog provides the most basic
capabilities for OpenGL/JOGL programming. It defines some generally
useful constants and the first set of class-specific variables and their
get(...)/set(...) methods that will be overridden in descendent
dialogs so that each level of the lineage has its own unique variables –
the body of the code uses the get(...)/set(...) functions for
access to them.

As in all dialogs, there is a main(...) function defined that allows
the standalone running of the dialog independently of the main
Morpheus_JOGL – this is very handy for debugging.

This class defines an initOverrides(...) method that is called after dialog creation – Java
strongly discourages the use of overridden functions in class constructors. Among other things, this
function creates the GLCanvas object, which is what provides access via JOGL to the OpenGL system.
This is added as the drawing area for the dialog.

The setupDialog(...) method is called after initOverrides(...) to position and display
the dialog.

The generateGeometry(...) method generates the vertex coordinates and whatever else might
be needed for a displayed graphical object in later, overridden functions. Here, the coordinates are of an

10of36

equilateral triangle circumscribed by an origin-centered circle of radius 2.

The class then overrides the four methods required of a GLEventListener – init(...),
reshape(...), display(...), and dispose(...).

The loadBuffers(...) method, called from init(...), sets up and stores data in the OpenGL
environment.

The display(...) method handles the OpenGL drawing, but the heavy lifting is actually passed off
to a drawScene(...) method that can be more flexibly overridden in subsequent dialogs.

A number of utility methods are also defined including: loadShaderFile(...) that reads in a
shader program as a text string, initVertexShader(...) that compiles a string read in from a
vertex shader file, initFragmentShader(...) that compiles a string read in from a fragment
shader file, initShaderProgram(...) that combines the compiled vertex and fragment shaders
into a single OpenGL program, and printShaderLog(...) and printProgramLog(...)
that are general debugging methods for shader and OpenGL program testing.

Several methods are overridden that are required for a KeyListener: keyTyped(...),
keyPressed(...), and keyReleased(...). Morpheus_JOGL only uses the
keyPressed(...) method. In this case, it is used to change the display mode from solid triangle to
vertex points to outlined triangle. Keys are also captured to set the size of the points when the vertices
are rendered as single points.

Each OpenGL GLSL program must provide two shaders – a vertex shader that processes data coming
into OpenGL from the program before passing it along, and a fragment shader, that accepts data from
the OpenGL system and determines final pixel color. For this first dialog, the vertex shader only
receives vertex coordinate data and passes it on in proper (homogeneous coordinate) form, e.g.,
(x,y,z,1.0). The fragment shader does nothing but set the color for any pixel requested to an opaque
white: (red=1.0, green=1.0, blue=1.0, alpha=1.0). The “alpha” controls pixel transparency with 0.0
being invisible and 1.0 being opaque. All values are floats.

Hot Keys: 'm' – mode. Cycles the display mode from filled faces to vertex points to face edges, and
back to filled faces, etc.

'1'-'9' – point size. When in point display mode, this sets the size of the points rendered.

Morpheus_JOGL_dlg02_color.java – adds color to the vertices of the
triangle created in the first dialog and adds a color background. New
variables are added to identify and hold the background and vertex
colors. A method is provided to generate random background colors.
Other methods are overridden as appropriate (see the “METHODS”
section of the Appendix). The vertex shader is modified to receive and
pass on the vertex color as an (r,g,b) 3-vector. The fragment shader
simply passes out the color it has been given augmented with a constant
alpha=1.0 value.

Hot Keys: 'space bar' – changes the background to a randomly
generated color.

11of36

equilateral triangle circumscribed by an origin-centered circle of radius 2.

The class then overrides the four methods required of a GLEventListener – init(...),
reshape(...), display(...), and dispose(...).

The loadBuffers(...) method, called from init(...), sets up and stores data in the OpenGL
environment.

The display(...) method handles the OpenGL drawing, but the heavy lifting is actually passed off
to a drawScene(...) method that can be more flexibly overridden in subsequent dialogs.

A number of utility methods are also defined including: loadShaderFile(...) that reads in a
shader program as a text string, initVertexShader(...) that compiles a string read in from a
vertex shader file, initFragmentShader(...) that compiles a string read in from a fragment
shader file, initShaderProgram(...) that combines the compiled vertex and fragment shaders
into a single OpenGL program, and printShaderLog(...) and printProgramLog(...)
that are general debugging methods for shader and OpenGL program testing.

Several methods are overridden that are required for a KeyListener: keyTyped(...),
keyPressed(...), and keyReleased(...). Morpheus_JOGL only uses the
keyPressed(...) method. In this case, it is used to change the display mode from solid triangle to
vertex points to outlined triangle. Keys are also captured to set the size of the points when the vertices
are rendered as single points.

Each OpenGL GLSL program must provide two shaders – a vertex shader that processes data coming
into OpenGL from the program before passing it along, and a fragment shader, that accepts data from
the OpenGL system and determines final pixel color. For this first dialog, the vertex shader only
receives vertex coordinate data and passes it on in proper (homogeneous coordinate) form, e.g.,
(x,y,z,1.0). The fragment shader does nothing but set the color for any pixel requested to an opaque
white: (red=1.0, green=1.0, blue=1.0, alpha=1.0). The “alpha” controls pixel transparency with 0.0
being invisible and 1.0 being opaque. All values are floats.

Hot Keys: 'm' – mode. Cycles the display mode from filled faces to vertex points to face edges, and
back to filled faces, etc.

'1'-'9' – point size. When in point display mode, this sets the size of the points rendered.

Morpheus_JOGL_dlg02_color.java – adds color to the vertices of the
triangle created in the first dialog and adds a color background. New
variables are added to identify and hold the background and vertex
colors. A method is provided to generate random background colors.
Other methods are overridden as appropriate (see the “METHODS”
section of the Appendix). The vertex shader is modified to receive and
pass on the vertex color as an (r,g,b) 3-vector. The fragment shader
simply passes out the color it has been given augmented with a constant
alpha=1.0 value.

Hot Keys: 'space bar' – changes the background to a randomly
generated color.

11of36

Morpheus_JOGL_dlg03_animation.java – animates the color
triangle display with continuous rotation. This requires an animator and
a rotation matrix which are provided as new local variables with
get(...)/set(...) methods and a frame counter to change the
direction of rotation every so often. The animation effect is provided by
a JOGL FPSAnimator that attempts to call the display(...)
method at a desired frame-per-second rate, which is set to 24fps in this
program. At each call to the display(...) method, the animation
rotation matrix is updated by multiplication by incremental rotation
around the x, y, and z axes. After so many frames, these parameters are
changed to add visual interest. Other methods are added or overridden
to support this.

The animation matrix is actually passed to the vertex shader as part of a general mvp transformation
matrix. This provides for transformation of the geometric model to “world” or “data” space, the
transformation from that space to the “view” space, which in OpenGL is -1 to +1 mapping of the screen
x, y display and 0 to +1 in the z direction. Rotation, translation, and scaling can all be applied through
the construction of these intermediate matrices and composited into a single mvp matrix prior to
rendering. The vertex shader is modified to receive this matrix and apply the transform to the vertex
coordinates before passing them back to OpenGL. For the time being, the mvp matrix is just a copy of
the animation rotation matrix. Later on, a whole series of matrices will be defined to separate the
various components of different transformations and user-driven mouse interaction.

The mvp matrix is defined as a “uniform” variable within the vertex shader. Unlike, say, colors that
may change with each vertex element, “uniform” variables are set once for processing of all vertices
currently being processed.

Changes are made to the shaders to support color being passed out of the vertex shader and into the
fragment shader as a 4-vector (r,g,b,a).

A utility method is also defined that prints out a given matrix and associated string in a format that can
be copied and pasted directly into R for testing transformation math.

Hot Keys: 'a' – animation. Turns animation ON (true) or OFF (false). The default ON.

'h' – home. Reinitializes the animation rotation matrix to its home position – the animation
rotation matrix is set to the identity matrix. Unless the animation is stopped, however,
rotation will continue from this orientation.

Morpheus_JOGL_dlg04_aspect.java – previous matrices mapped the equilateral
triangle to fill the window, which OpenGL maps to -1 to +1 in the x, y directions
(and 0 to 1 in the z). In this dialog, an aspect adjustment matrix is defined that
scales the data in the x or y direction so that the aspect of the data is preserved
regardless of window shape, say, tall-narrow vs. short, wide, relatively speaking.
This adjustment matrix is set in the overridden reshape(...) method and
composited into the mvp matrix. As such, this dialog can use the unmodified vertex
and fragment shaders from Morpheus_JOGL_dlg03_animation.

12of36

Morpheus_JOGL_dlg03_animation.java – animates the color
triangle display with continuous rotation. This requires an animator and
a rotation matrix which are provided as new local variables with
get(...)/set(...) methods and a frame counter to change the
direction of rotation every so often. The animation effect is provided by
a JOGL FPSAnimator that attempts to call the display(...)
method at a desired frame-per-second rate, which is set to 24fps in this
program. At each call to the display(...) method, the animation
rotation matrix is updated by multiplication by incremental rotation
around the x, y, and z axes. After so many frames, these parameters are
changed to add visual interest. Other methods are added or overridden
to support this.

The animation matrix is actually passed to the vertex shader as part of a general mvp transformation
matrix. This provides for transformation of the geometric model to “world” or “data” space, the
transformation from that space to the “view” space, which in OpenGL is -1 to +1 mapping of the screen
x, y display and 0 to +1 in the z direction. Rotation, translation, and scaling can all be applied through
the construction of these intermediate matrices and composited into a single mvp matrix prior to
rendering. The vertex shader is modified to receive this matrix and apply the transform to the vertex
coordinates before passing them back to OpenGL. For the time being, the mvp matrix is just a copy of
the animation rotation matrix. Later on, a whole series of matrices will be defined to separate the
various components of different transformations and user-driven mouse interaction.

The mvp matrix is defined as a “uniform” variable within the vertex shader. Unlike, say, colors that
may change with each vertex element, “uniform” variables are set once for processing of all vertices
currently being processed.

Changes are made to the shaders to support color being passed out of the vertex shader and into the
fragment shader as a 4-vector (r,g,b,a).

A utility method is also defined that prints out a given matrix and associated string in a format that can
be copied and pasted directly into R for testing transformation math.

Hot Keys: 'a' – animation. Turns animation ON (true) or OFF (false). The default ON.

'h' – home. Reinitializes the animation rotation matrix to its home position – the animation
rotation matrix is set to the identity matrix. Unless the animation is stopped, however,
rotation will continue from this orientation.

Morpheus_JOGL_dlg04_aspect.java – previous matrices mapped the equilateral
triangle to fill the window, which OpenGL maps to -1 to +1 in the x, y directions
(and 0 to 1 in the z). In this dialog, an aspect adjustment matrix is defined that
scales the data in the x or y direction so that the aspect of the data is preserved
regardless of window shape, say, tall-narrow vs. short, wide, relatively speaking.
This adjustment matrix is set in the overridden reshape(...) method and
composited into the mvp matrix. As such, this dialog can use the unmodified vertex
and fragment shaders from Morpheus_JOGL_dlg03_animation.

12of36

Morpheus_JOGL_dlg05_cube.java – this class constructs more
complicated geometry, a cube, from the most complex geometry
support by OpenGL, the triangle. A cube has six, square faces, and each
face can be defined by two triangles. Thus, to represent a cube, one
needs to specify twelve triangles. The generateGeometry(...)
method is overridden to call a makeCube(...) method that redefines
the vertex and color array to represent a cube. Vertex colors are set
randomly for illustration. Note, too, that when triangles are rendered the
ordering of their vertices determines the front and back of the triangle.
A face showing ABC in a counterclockwise direction would be the
front face. That showing ABC in a clockwise direction is considered the
back face. Details of cube specification are found in the code comments.

Since the above required relatively little coding, the ability to change the handling of color during
rendering was added. The default is to color the vertices according to how they are specified.
Alternatives include mapping those colors to grayscale or red- or blue- or green-scale, sequentially,
before returning to color. Code comments describe the mapping used.

Again, no changes were required for the shaders and the dialog uses those from
Morpheus_JOGL_dlg03_animation.

Hot Keys: 'g' – grayscale. Cycles the color mode from color to grayscale to red to green to blue, then
back to color, etc.

Morpheus_JOGL_dlg06_mvpMx.java – this dialog introduces
projection, either perspective or orthogonal, onto the view port, a.k.a.
the dialog window. Previous dialogs assumed data were already within
the OpenGL frustum (view volume) and the animation transformation
simply rotated the object is place. Here we introduce all of the matrices
for various transformations, and leave all as identity except those for
projection of the objects onto the view port. There are two options.
Perspective projection approximates real world viewing in which things
farther away appear closer together. Parallel lines, e.g. railroad tracks,
seem to converge in the distance. Orthogonal projection projects the
data straight onto the view screen such that parallel lines going off into
the distance remain parallel after rendering onto the viewport and distance between points at varying
distance from the viewer maintain their apparent distance.

The full compliment of matrices introduced are the model matrix that transforms the generated
geometry into the desired scale, orientation, and position, the view matrix that transforms the resulting
data coordinates to fit within the OpenGL viewing volume (-1 to +1; -1 to +1; 0 to +1) for (x, y, z), and
the projection matrix that transforms to give the desired type of projection. Each of these can be
composited from several other matrices. The model matrix, for instance, is the product of model
scaling, rotation, and translation matrices applied in that order – order is critical! The view matrix
consists of the product of the view scaling, rotation, and translation matrix followed by the animation
rotation matrix and the mouse scaling, rotation, and translation matrices. Finally, the projection matrix

13of36

Morpheus_JOGL_dlg05_cube.java – this class constructs more
complicated geometry, a cube, from the most complex geometry
support by OpenGL, the triangle. A cube has six, square faces, and each
face can be defined by two triangles. Thus, to represent a cube, one
needs to specify twelve triangles. The generateGeometry(...)
method is overridden to call a makeCube(...) method that redefines
the vertex and color array to represent a cube. Vertex colors are set
randomly for illustration. Note, too, that when triangles are rendered the
ordering of their vertices determines the front and back of the triangle.
A face showing ABC in a counterclockwise direction would be the
front face. That showing ABC in a clockwise direction is considered the
back face. Details of cube specification are found in the code comments.

Since the above required relatively little coding, the ability to change the handling of color during
rendering was added. The default is to color the vertices according to how they are specified.
Alternatives include mapping those colors to grayscale or red- or blue- or green-scale, sequentially,
before returning to color. Code comments describe the mapping used.

Again, no changes were required for the shaders and the dialog uses those from
Morpheus_JOGL_dlg03_animation.

Hot Keys: 'g' – grayscale. Cycles the color mode from color to grayscale to red to green to blue, then
back to color, etc.

Morpheus_JOGL_dlg06_mvpMx.java – this dialog introduces
projection, either perspective or orthogonal, onto the view port, a.k.a.
the dialog window. Previous dialogs assumed data were already within
the OpenGL frustum (view volume) and the animation transformation
simply rotated the object is place. Here we introduce all of the matrices
for various transformations, and leave all as identity except those for
projection of the objects onto the view port. There are two options.
Perspective projection approximates real world viewing in which things
farther away appear closer together. Parallel lines, e.g. railroad tracks,
seem to converge in the distance. Orthogonal projection projects the
data straight onto the view screen such that parallel lines going off into
the distance remain parallel after rendering onto the viewport and distance between points at varying
distance from the viewer maintain their apparent distance.

The full compliment of matrices introduced are the model matrix that transforms the generated
geometry into the desired scale, orientation, and position, the view matrix that transforms the resulting
data coordinates to fit within the OpenGL viewing volume (-1 to +1; -1 to +1; 0 to +1) for (x, y, z), and
the projection matrix that transforms to give the desired type of projection. Each of these can be
composited from several other matrices. The model matrix, for instance, is the product of model
scaling, rotation, and translation matrices applied in that order – order is critical! The view matrix
consists of the product of the view scaling, rotation, and translation matrix followed by the animation
rotation matrix and the mouse scaling, rotation, and translation matrices. Finally, the projection matrix

13of36

consists of a base viewing matrix to reposition the data in the frustum for projection and a projection
matrix, which could be orthogonal or perspective, which effects the desired projection, and a final
aspect correction matrix.

The coordinates leave the vertex shader after the mvp transformation has been applied. That is:

coords_out = mvp * data_coords

= perspective * view * model * data_coords
(terms reversed because of how mx mult carried out)

= aspect
* projection
* projection_base
* mouse_translation * mouse_rotation * mouse_scaling
* animation_rotation
* view_translation * view_rotation * view_scaling
* model_translation * model_rotation * model_scaling
* data_coords

The generateGeometry(...) method is overridden to provide solid face colors and to tweak the
location and orientation a bit for testing and visual interest. There is a function,
tweakGeometry(...), to apply a certain amount of translation and scaling and a function for
determining the extent of the geometry to be rendered, setModelToViewMx(...). This allows the
user the choice of centering that display on the object or on the origin. The min/max of the data
accounting for centering preference are saved for later plotting of axes.

A utility function is retained that shows a transformation matrix for debugging.

Changes are made only to the mvp matrix. Hence, this dialog still uses the
Morpheus_JOGL_dlg03_animation vertex and fragment shaders.

Hot Keys: 'c' – center. This toggles between centering the rendered scene on the origin or the center
of the object being rendered. The default may change from dialog to dialog depending
upon which display is most appropriate for the feature being developed.

'p' – perspective. Renders scene using perspective projection.

'o' – orthogonal. Renders scene using orthogonal projection.

The home key, 'h', is overridden to account for different matrix initialization.

Morpheus_JOGL_dlg07_lighting.java – adds lighting to the scene.
Previous dialogs simply colored pixels interpolated between vertices by
the color specified at the vertices or interpolated from them. This dialog
colors each pixel according to its illumination from various light
sources: ambient, diffuse, and specular. Ambient light is that which is
reflected all around and therefore illuminates all pixels to some degree.
Diffuse light is directional and more brightly illuminates pixels that are
part of surfaces more directed toward the light source. Specular light,
finally, is the focused light coming from a specific light source that
provides highlights on the surface of the object. A reasonable

14of36

consists of a base viewing matrix to reposition the data in the frustum for projection and a projection
matrix, which could be orthogonal or perspective, which effects the desired projection, and a final
aspect correction matrix.

The coordinates leave the vertex shader after the mvp transformation has been applied. That is:

coords_out = mvp * data_coords

= perspective * view * model * data_coords
(terms reversed because of how mx mult carried out)

= aspect
* projection
* projection_base
* mouse_translation * mouse_rotation * mouse_scaling
* animation_rotation
* view_translation * view_rotation * view_scaling
* model_translation * model_rotation * model_scaling
* data_coords

The generateGeometry(...) method is overridden to provide solid face colors and to tweak the
location and orientation a bit for testing and visual interest. There is a function,
tweakGeometry(...), to apply a certain amount of translation and scaling and a function for
determining the extent of the geometry to be rendered, setModelToViewMx(...). This allows the
user the choice of centering that display on the object or on the origin. The min/max of the data
accounting for centering preference are saved for later plotting of axes.

A utility function is retained that shows a transformation matrix for debugging.

Changes are made only to the mvp matrix. Hence, this dialog still uses the
Morpheus_JOGL_dlg03_animation vertex and fragment shaders.

Hot Keys: 'c' – center. This toggles between centering the rendered scene on the origin or the center
of the object being rendered. The default may change from dialog to dialog depending
upon which display is most appropriate for the feature being developed.

'p' – perspective. Renders scene using perspective projection.

'o' – orthogonal. Renders scene using orthogonal projection.

The home key, 'h', is overridden to account for different matrix initialization.

Morpheus_JOGL_dlg07_lighting.java – adds lighting to the scene.
Previous dialogs simply colored pixels interpolated between vertices by
the color specified at the vertices or interpolated from them. This dialog
colors each pixel according to its illumination from various light
sources: ambient, diffuse, and specular. Ambient light is that which is
reflected all around and therefore illuminates all pixels to some degree.
Diffuse light is directional and more brightly illuminates pixels that are
part of surfaces more directed toward the light source. Specular light,
finally, is the focused light coming from a specific light source that
provides highlights on the surface of the object. A reasonable

14of36

discussion of these light sources and how they are implemented in GLSL can be found at
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-8-basic-shading/.

The computation of all of these components is somewhat involved and requires the calculations of the
pixel location relative to the viewer and the light source. The necessary code changes were adapted
from the examples provided in David Wolff's “OpenGL 4.0 Shading Language Cookbook” (2011).

A key new component necessary for the computation of lighting is the “normal” vector at each pixel. If
you consider a planar table top, the normal vector for any spot on the table top is a (unit) vector that
points upwards at a right angle from the plane of the top. Light hitting this point at some angle bounces
off of the point at the same angle attenuated somewhat by the shininess of the material at that point.
Each vertex has a normal calculated for it relative to the triangle of which it is a part. Thus, vertices that
are part of several triangles will have normals for each of those triangles just as it has a color assigned
for each triangle. The main body of code for this class includes variables and methods for computing
the normals for the vertices of each triangle and for storing these values and passing them into the
vertex shader.

In addition, one must compute the transformations of the normals within the vertex shader, as well as
the position of the viewer (eye position). The general solution for this requires additional mv (model-
view) and mvit (model-view inverse transpose) matrices. These are passed into the shader as uniform
variables (unchanging during geometry rendering) as well as some variables for using the lighting
calculations (or not), lightson, and a transparency specification, “alpha” - previous dialogs used
only opaque rendering. Since shaders do not support boolean variables, lightson is passed as a float
that is interpreted as true if the value is >0.5 and as false for any other value. If lightson is
false pixel color is unaltered with transparency set according to the alpha level.

Hot Keys: 'l' – lighting computations ON (true)/OFF (false). They are ON by default.

't' – transparency. Cycles through opaque (alpha=1.0) through various levels (alpha=0.6,
0.3) of face transparency until face is invisibly rendered (alpha=0.0), then back to opacity
and so forth. The rendering of true transparency is a very complicated issue – the distance
and occlusion relationships of all elements must be taken into account. Morpheus_JOGL
only approximates transparency by changing the opacity of individual rendering elements.

Morpheus_JOGL_dlg08_surface.java – loads a more complicated
geometry from an external file and adds axis plotting. Rendered
geometry thus far has been generated mathematically within the
program. In this dialog an external file is read containing vertices,
vertex color, and face definitions. The provided file,
Morpheus_JOGL_sample.surface, is in a very simple, non-standard
format. The first line gives the number of vertex definition lines to
follow immediately. Each of these lines contains the coordinates of a
vertex and its color as RGB ranging from 0-255. This is followed by a
line containing the number of face definition lines, each of which
contains three vertex indices, i,j,k. This is actually a pared down
version of data from a .ply file. However, a method for the general reading of .ply files or .obj, or .stl,
or other standard formats is beyond the scope of this project.

15of36

discussion of these light sources and how they are implemented in GLSL can be found at
http://www.opengl-tutorial.org/beginners-tutorials/tutorial-8-basic-shading/.

The computation of all of these components is somewhat involved and requires the calculations of the
pixel location relative to the viewer and the light source. The necessary code changes were adapted
from the examples provided in David Wolff's “OpenGL 4.0 Shading Language Cookbook” (2011).

A key new component necessary for the computation of lighting is the “normal” vector at each pixel. If
you consider a planar table top, the normal vector for any spot on the table top is a (unit) vector that
points upwards at a right angle from the plane of the top. Light hitting this point at some angle bounces
off of the point at the same angle attenuated somewhat by the shininess of the material at that point.
Each vertex has a normal calculated for it relative to the triangle of which it is a part. Thus, vertices that
are part of several triangles will have normals for each of those triangles just as it has a color assigned
for each triangle. The main body of code for this class includes variables and methods for computing
the normals for the vertices of each triangle and for storing these values and passing them into the
vertex shader.

In addition, one must compute the transformations of the normals within the vertex shader, as well as
the position of the viewer (eye position). The general solution for this requires additional mv (model-
view) and mvit (model-view inverse transpose) matrices. These are passed into the shader as uniform
variables (unchanging during geometry rendering) as well as some variables for using the lighting
calculations (or not), lightson, and a transparency specification, “alpha” - previous dialogs used
only opaque rendering. Since shaders do not support boolean variables, lightson is passed as a float
that is interpreted as true if the value is >0.5 and as false for any other value. If lightson is
false pixel color is unaltered with transparency set according to the alpha level.

Hot Keys: 'l' – lighting computations ON (true)/OFF (false). They are ON by default.

't' – transparency. Cycles through opaque (alpha=1.0) through various levels (alpha=0.6,
0.3) of face transparency until face is invisibly rendered (alpha=0.0), then back to opacity
and so forth. The rendering of true transparency is a very complicated issue – the distance
and occlusion relationships of all elements must be taken into account. Morpheus_JOGL
only approximates transparency by changing the opacity of individual rendering elements.

Morpheus_JOGL_dlg08_surface.java – loads a more complicated
geometry from an external file and adds axis plotting. Rendered
geometry thus far has been generated mathematically within the
program. In this dialog an external file is read containing vertices,
vertex color, and face definitions. The provided file,
Morpheus_JOGL_sample.surface, is in a very simple, non-standard
format. The first line gives the number of vertex definition lines to
follow immediately. Each of these lines contains the coordinates of a
vertex and its color as RGB ranging from 0-255. This is followed by a
line containing the number of face definition lines, each of which
contains three vertex indices, i,j,k. This is actually a pared down
version of data from a .ply file. However, a method for the general reading of .ply files or .obj, or .stl,
or other standard formats is beyond the scope of this project.

15of36

Since the above only requires an override and rewrite of the generateGeometry(...) method,
this dialog also adds the rendering of axes – either at the origin extending -1 to +1 on each axis or at the
center of the object and extending over the min/max of the object in each dimension. Which is used
depends upon the centering option chosen for display – uncentered rendering shows the axes at origin,
centered rendering shows that axes centered within the geometry.

Code modifications are mainly an override of generateGeometry(...) and the provision and
manipulation of axis drawing variables and associated methods. The overridden drawScene(...)
method calls a drawAxis(...) method if requested.

The dialog uses the shader files from Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: 'x' – axis. Turns ON (true)/OFF (false) the plotting of axes. Default may change from
dialog to dialog.

Morpheus_JOGL_dlg09_text.java – adds text to the scene.
Specifically, this dialog displays a string showing the background color
in both 0-255 RGB values and the OpenGL compatible 0.0 to 1.0
values along with instructions for randomly changing the background
color. I find I often come across pleasing colors through random
generation that I could not directly appreciate with color-picking
swatches or explicit, manual blending. This provides the code values to
reproduce those colors.

Text drawing is not a well-defined component of OpenGL. In fact, it is
not even indexed in the OpenGL Programming Guide or the OpenGL
4.0 Shading Language Cookbook. The routines used here were modified from online examples posted
in the JOGL forum as noted in the program comments.

There is one known bug in this code. Off-origin text is not positioned properly. This likely requires just
sitting down and working through the mathematics of the transformation matrices for text, but other
hard deadlines prevent me from doing this at the moment, and I don't want to delay distribution of the
program/code just for this.

Also, it is worth noting that the text drawing routines disable blending, which is necessary for the
pseudo-transparency achieved through an alpha<1.0 in the pixel color specification. This must be re-
enabled at the end of the drawText method.

No changes are required to the Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: 's' – string. Turns the display of the program-generated string ON (true) or OFF
(false).

Object centering and animation default to OFF for this dialog.

Morpheus_JOGL_dlg10_mouse.java – provides mouse support for user manipulation of the scene.
The left mouse button (click and drag) controls rotation, the right button controls translation, and the
middle button or wheel controls scaling. These functions can also be accessed via modification of the

16of36

Since the above only requires an override and rewrite of the generateGeometry(...) method,
this dialog also adds the rendering of axes – either at the origin extending -1 to +1 on each axis or at the
center of the object and extending over the min/max of the object in each dimension. Which is used
depends upon the centering option chosen for display – uncentered rendering shows the axes at origin,
centered rendering shows that axes centered within the geometry.

Code modifications are mainly an override of generateGeometry(...) and the provision and
manipulation of axis drawing variables and associated methods. The overridden drawScene(...)
method calls a drawAxis(...) method if requested.

The dialog uses the shader files from Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: 'x' – axis. Turns ON (true)/OFF (false) the plotting of axes. Default may change from
dialog to dialog.

Morpheus_JOGL_dlg09_text.java – adds text to the scene.
Specifically, this dialog displays a string showing the background color
in both 0-255 RGB values and the OpenGL compatible 0.0 to 1.0
values along with instructions for randomly changing the background
color. I find I often come across pleasing colors through random
generation that I could not directly appreciate with color-picking
swatches or explicit, manual blending. This provides the code values to
reproduce those colors.

Text drawing is not a well-defined component of OpenGL. In fact, it is
not even indexed in the OpenGL Programming Guide or the OpenGL
4.0 Shading Language Cookbook. The routines used here were modified from online examples posted
in the JOGL forum as noted in the program comments.

There is one known bug in this code. Off-origin text is not positioned properly. This likely requires just
sitting down and working through the mathematics of the transformation matrices for text, but other
hard deadlines prevent me from doing this at the moment, and I don't want to delay distribution of the
program/code just for this.

Also, it is worth noting that the text drawing routines disable blending, which is necessary for the
pseudo-transparency achieved through an alpha<1.0 in the pixel color specification. This must be re-
enabled at the end of the drawText method.

No changes are required to the Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: 's' – string. Turns the display of the program-generated string ON (true) or OFF
(false).

Object centering and animation default to OFF for this dialog.

Morpheus_JOGL_dlg10_mouse.java – provides mouse support for user manipulation of the scene.
The left mouse button (click and drag) controls rotation, the right button controls translation, and the
middle button or wheel controls scaling. These functions can also be accessed via modification of the

16of36

left mouse button: left button = rotation, left+alt = translation, and left+ctrl = scaling.

The computations for intuitive rotation are rather complex and emulate
the manipulation of a trackball. Thus, the screen coordinates of the
mouse position must be projected onto the ball and rotation computed
through changes in this position. The relevant code was modified from
various sources with discussions of the procedure found in links
provided in the program comments.

The string-generation method is overridden to add hints on mouse
usage to the user.

Again, the Morpheus_JOGL_dlg07_lighting vertex and fragment
shaders are used.

This dialog also marks a trifurcation in dialog inheritance. The immediate branch generates plots of
simple points and lines mostly through manipulation of the drawing mode. The second branch deals
with the more complex issue of rendering multiple geometries, spheres and rods (closed cylinders). The
third handles images as textures mapped to either a rectangle (preserving image aspect) or a cube (not
preserving aspect).

Hot Keys: 'r' – reset. Resets the mouse transformation matrices to their original states.

Object centering is turned ON for rendering, and the surface from the previous dialog is
rendered in its most pseudo-transparent, but visible, mode.

Morpheus_JOGL_dlg11_points.java – illustrates the plotting of
simple points in random colors through the manipulation of the
rendering mode. A method is provided that generates random points
within the unit sphere. The initOverrides(...) method is
overridden to set the rendering mode to POINTS, and the
setModelToViewMx(...) is overridden to bypass the centering
computations, which are unnecessary since all points are within the -1
to +1 limits of OpenGL plotting (adjusted for aspect). Fake normals are
generated for the points, and the only programming complexity is that
point coordinates are added sequentially to the vertex array until a
specified number (500) is reached, then replaced starting at the
beginning of the array. Point generation is linked to the animator's call to the display(...)
function, so when animation is turned OFF, point generation stops. Also, mouse control of the image
forces a repaint and, thus, also calls the point generation routine. The dialog uses the
Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: As with the existing POINT display mode, the number keys '1'-'9' set the point size from 1
to 17. The default for this dialog is '5'.

Lighting is turned OFF by default because the fake normals don't provide full lighting of
the back of the points, but this can be turned on to see the effect.

17of36

left mouse button: left button = rotation, left+alt = translation, and left+ctrl = scaling.

The computations for intuitive rotation are rather complex and emulate
the manipulation of a trackball. Thus, the screen coordinates of the
mouse position must be projected onto the ball and rotation computed
through changes in this position. The relevant code was modified from
various sources with discussions of the procedure found in links
provided in the program comments.

The string-generation method is overridden to add hints on mouse
usage to the user.

Again, the Morpheus_JOGL_dlg07_lighting vertex and fragment
shaders are used.

This dialog also marks a trifurcation in dialog inheritance. The immediate branch generates plots of
simple points and lines mostly through manipulation of the drawing mode. The second branch deals
with the more complex issue of rendering multiple geometries, spheres and rods (closed cylinders). The
third handles images as textures mapped to either a rectangle (preserving image aspect) or a cube (not
preserving aspect).

Hot Keys: 'r' – reset. Resets the mouse transformation matrices to their original states.

Object centering is turned ON for rendering, and the surface from the previous dialog is
rendered in its most pseudo-transparent, but visible, mode.

Morpheus_JOGL_dlg11_points.java – illustrates the plotting of
simple points in random colors through the manipulation of the
rendering mode. A method is provided that generates random points
within the unit sphere. The initOverrides(...) method is
overridden to set the rendering mode to POINTS, and the
setModelToViewMx(...) is overridden to bypass the centering
computations, which are unnecessary since all points are within the -1
to +1 limits of OpenGL plotting (adjusted for aspect). Fake normals are
generated for the points, and the only programming complexity is that
point coordinates are added sequentially to the vertex array until a
specified number (500) is reached, then replaced starting at the
beginning of the array. Point generation is linked to the animator's call to the display(...)
function, so when animation is turned OFF, point generation stops. Also, mouse control of the image
forces a repaint and, thus, also calls the point generation routine. The dialog uses the
Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: As with the existing POINT display mode, the number keys '1'-'9' set the point size from 1
to 17. The default for this dialog is '5'.

Lighting is turned OFF by default because the fake normals don't provide full lighting of
the back of the points, but this can be turned on to see the effect.

17of36

Morpheus_JOGL_dlg12_lines.java – generates random lines within a
unit sphere. The only substantial change to
Morpheus_JOGL_dlg11_points is that random points are generated in
pairs and the drawScene(...) method is overridden to set the
drawing mode to GL_LINES that treats the array as pairs of line
segment endpoints. The specified number of lines is 120, and segment
generation is again linked to the animator. Segment generation is linked
to the display(...) functions, hence stopping the animator stops
segment generation and mouse manipulation forces a repaint, which
calls segment generation.

One noteworthy aspect is that setting the width of rasterized lines through glLineWidth(...) is
not a required component of an OpenGL implementation. To avoid using this, it is suggested lines be
drawn as narrow polygons, but this has not been implemented here.

The dialog uses the Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: The mode key, 'm', has been disabled to force line segment drawing.

Lighting is turned OFF by default for the same reasons as in the previous dialog.

Morpheus_JOGL_dlg13_spheres.java – the second branch of the
trifurcation at Morpheus_dlg10_mouse plots spheres of random size
and color at random locations within a unit sphere. Each sphere uses the
vertex and normal arrays generated in the method introduced in
Morpheus_JOGL_dlg07_lighting dialog, but has its own scaling and
location transformations set through individual model matrices. These
model matrices are then used in the construction of the mvp matrix
prior to rendering each sphere. This better approximates the actual
plotting of data points likely to be used in an application.

Spheres are added to the scene up to a specified number (200).
Afterwards, they are replaced sequentially. Because of the complexity (number of faces to achieve a
smooth look) of each sphere, animation rotation is turned OFF. Sphere generation is, however, handled
through calls to the display(...) method by the animator, so turning the animator OFF stops
sphere generation, while mouse interaction, which requires a repaint, calls the sphere generator. The
dialog uses the Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: No new hotkeys are introduced.

Morpheus_JOGL_dlg14_rods.java – renders rods (closed cylinders) between random points in
random colors within a unit sphere. Similar to the Morpheus_JOGL_dlg13_spheres dialog, the rods are

18of36

Morpheus_JOGL_dlg12_lines.java – generates random lines within a
unit sphere. The only substantial change to
Morpheus_JOGL_dlg11_points is that random points are generated in
pairs and the drawScene(...) method is overridden to set the
drawing mode to GL_LINES that treats the array as pairs of line
segment endpoints. The specified number of lines is 120, and segment
generation is again linked to the animator. Segment generation is linked
to the display(...) functions, hence stopping the animator stops
segment generation and mouse manipulation forces a repaint, which
calls segment generation.

One noteworthy aspect is that setting the width of rasterized lines through glLineWidth(...) is
not a required component of an OpenGL implementation. To avoid using this, it is suggested lines be
drawn as narrow polygons, but this has not been implemented here.

The dialog uses the Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: The mode key, 'm', has been disabled to force line segment drawing.

Lighting is turned OFF by default for the same reasons as in the previous dialog.

Morpheus_JOGL_dlg13_spheres.java – the second branch of the
trifurcation at Morpheus_dlg10_mouse plots spheres of random size
and color at random locations within a unit sphere. Each sphere uses the
vertex and normal arrays generated in the method introduced in
Morpheus_JOGL_dlg07_lighting dialog, but has its own scaling and
location transformations set through individual model matrices. These
model matrices are then used in the construction of the mvp matrix
prior to rendering each sphere. This better approximates the actual
plotting of data points likely to be used in an application.

Spheres are added to the scene up to a specified number (200).
Afterwards, they are replaced sequentially. Because of the complexity (number of faces to achieve a
smooth look) of each sphere, animation rotation is turned OFF. Sphere generation is, however, handled
through calls to the display(...) method by the animator, so turning the animator OFF stops
sphere generation, while mouse interaction, which requires a repaint, calls the sphere generator. The
dialog uses the Morpheus_JOGL_dlg07_lighting vertex and fragment shaders.

Hot Keys: No new hotkeys are introduced.

Morpheus_JOGL_dlg14_rods.java – renders rods (closed cylinders) between random points in
random colors within a unit sphere. Similar to the Morpheus_JOGL_dlg13_spheres dialog, the rods are

18of36

based on a single generated geometry and individually transformed using the model scale, rotation, and
translation matrices.

Construction of the base rod is a bit tedious. It has unit length and unit
diameter, which are altered by the model matrices. Each rod is scaled to
a length matching the distance between the two random points along its
axis, but scaled according to a diameter specification in the plane
orthogonal to that. It is oriented in the direction parallel to the vector
between the random points, and positioned such that one end is located
at the first random point. Given the scaling and rotation, the rod thus
extends between the two points. The primary computational complexity
arises in the computation of a rotation transformation to align the rod
with the vector between the two points. See code comments for details.

Animation rotation is restored, and again, the dialog uses the Morpheus_JOGL_dlg07_lighting vertex
and fragment shaders.

Hot Keys: 'd' – diameter. Cycles through a number of rod diameters: 0.005 (default), 0.01, 0.02, 0.04,
0.08 relative to the unit sphere.

Morpheus_JOGL_dlg15_image.java – the final branch of the
trifurcation at Morpheus_JOGL_dlg10_mouse illustrates the handling
of external, two-dimensional images. The images are loaded as textures,
and the triangles making up the rendered geometry are assigned
coordinates within the texture/image. The texture is mapped internally
from 0.0 to 1.0 in both the x and y dimensions. The initial scene maps
the texture/image to a rectangle adjusted for the aspect ratio of the
original image as one might do for general image display. An
alternative rendering maps the entire image to the faces of a cube.

Code modifications from Morpheus_JOGL_dlg10_mouse, involve
restarting the animator in the initOverrides(...) method and generating the appropriate
geometry (rectangle or cube) according to the asImage variable. When true, the geometry is an
aspect-corrected rectangle, when false it is a cube. The texture coordinates assigned to the corners of
the rectangle are (0.0, 0.0), (0.0, 1.0), (1.0, 1.0), and (1.0, 0.0), and similarly for each face of the cube.

A loadImage(...) method is provided that reads in the image and loads it into an OpenGL
compatible texture. Two other images illustrating different image aspects (tall vs. wide) can be
accessed by commenting out the default image loading line and uncommenting one of the other lines of
code. The previous makeCube(...) method is overridden to supply required, but unused, vertex
coordinates and texture coordinates for each of the constituent vertices. A makeRectangle(...)
method provides similar functions. Checks are included to see if geometry regeneration is required due
to changes in the requested geometry – rectangle vs. cube. Special handling is required to adjust for the
requested color mode (color, grayscale, red, green, blue) without reloading the original image.

Shader setup methods are also overridden to provide the additional texture coordinate data. The vertex
shader adds new variables to receive the texture coordinates for a vertex and a toggle to indicate if
these coordinates are to be used or not. The latter allows the same shaders to be used for drawing the

19of36

based on a single generated geometry and individually transformed using the model scale, rotation, and
translation matrices.

Construction of the base rod is a bit tedious. It has unit length and unit
diameter, which are altered by the model matrices. Each rod is scaled to
a length matching the distance between the two random points along its
axis, but scaled according to a diameter specification in the plane
orthogonal to that. It is oriented in the direction parallel to the vector
between the random points, and positioned such that one end is located
at the first random point. Given the scaling and rotation, the rod thus
extends between the two points. The primary computational complexity
arises in the computation of a rotation transformation to align the rod
with the vector between the two points. See code comments for details.

Animation rotation is restored, and again, the dialog uses the Morpheus_JOGL_dlg07_lighting vertex
and fragment shaders.

Hot Keys: 'd' – diameter. Cycles through a number of rod diameters: 0.005 (default), 0.01, 0.02, 0.04,
0.08 relative to the unit sphere.

Morpheus_JOGL_dlg15_image.java – the final branch of the
trifurcation at Morpheus_JOGL_dlg10_mouse illustrates the handling
of external, two-dimensional images. The images are loaded as textures,
and the triangles making up the rendered geometry are assigned
coordinates within the texture/image. The texture is mapped internally
from 0.0 to 1.0 in both the x and y dimensions. The initial scene maps
the texture/image to a rectangle adjusted for the aspect ratio of the
original image as one might do for general image display. An
alternative rendering maps the entire image to the faces of a cube.

Code modifications from Morpheus_JOGL_dlg10_mouse, involve
restarting the animator in the initOverrides(...) method and generating the appropriate
geometry (rectangle or cube) according to the asImage variable. When true, the geometry is an
aspect-corrected rectangle, when false it is a cube. The texture coordinates assigned to the corners of
the rectangle are (0.0, 0.0), (0.0, 1.0), (1.0, 1.0), and (1.0, 0.0), and similarly for each face of the cube.

A loadImage(...) method is provided that reads in the image and loads it into an OpenGL
compatible texture. Two other images illustrating different image aspects (tall vs. wide) can be
accessed by commenting out the default image loading line and uncommenting one of the other lines of
code. The previous makeCube(...) method is overridden to supply required, but unused, vertex
coordinates and texture coordinates for each of the constituent vertices. A makeRectangle(...)
method provides similar functions. Checks are included to see if geometry regeneration is required due
to changes in the requested geometry – rectangle vs. cube. Special handling is required to adjust for the
requested color mode (color, grayscale, red, green, blue) without reloading the original image.

Shader setup methods are also overridden to provide the additional texture coordinate data. The vertex
shader adds new variables to receive the texture coordinates for a vertex and a toggle to indicate if
these coordinates are to be used or not. The latter allows the same shaders to be used for drawing the

19of36

axes (useTexture OFF) as for rendering the image (useTexture ON). For general applications,
one might have separate shaders for drawing these different components.

The fragment shader uses the default sampler provided by OpenGL to retrieve appropriate texture color
if useTexture is ON or uses the provided color if it is OFF. Once the base pixel color is set,
processing proceeds as before according to the state of the LightsOn toggle.

Hot Keys: 'i' – image. Swaps display from mapping image onto an aspect-corrected rectangle to
mapping it onto the faces of a cube and vice versa.

20of36

axes (useTexture OFF) as for rendering the image (useTexture ON). For general applications,
one might have separate shaders for drawing these different components.

The fragment shader uses the default sampler provided by OpenGL to retrieve appropriate texture color
if useTexture is ON or uses the provided color if it is OFF. Once the base pixel color is set,
processing proceeds as before according to the state of the LightsOn toggle.

Hot Keys: 'i' – image. Swaps display from mapping image onto an aspect-corrected rectangle to
mapping it onto the faces of a cube and vice versa.

20of36

APPENDICES

CODE, JAVADOC, AND COMMENT LINES
It can be meaningless to report lines of code for a project since a large number of lines could indicate
either program complexity or programmer inefficiency. These are reported here to provide an
indication of the actual coding involved to achieve particular features because an increasing amount of
dialog lines were taken up by providing local variables and overridden get(...)/set(...)
methods. Eleven of the fifteen dialog classes have well over 1000 lines, but only four have more than
500 lines devoted to adding new features or capabilities. These line counts, too, include all code,
JavaDoc, and extensive inline comments.

Dialogs Total Lines Local Variables Net New Lines
Morpheus_JOGL_dlg01_triangle 1035 363 672
Morpheus_JOGL_dlg02_color 402 280 122
Morpheus_JOGL_dlg03_animation 644 381 263
Morpheus_JOGL_dlg04_aspect 460 379 81
Morpheus_JOGL_dlg05_cube 826 411 415
Morpheus_JOGL_dlg06_mvpMx 1319 551 768
Morpheus_JOGL_dlg07_lighting 1067 664 403
Morpheus_JOGL_dlg08_surface 1234 782 452
Morpheus_JOGL_dlg09_text 1222 867 355
Morpheus_JOGL_dlg10_mouse 1553 918 635
Morpheus_JOGL_dlg11_points 1289 913 376
Morpheus_JOGL_dlg12_lines 1227 914 313
Morpheus_JOGL_dlg13_spheres 1316 1016 300
Morpheus_JOGL_dlg14_rods 1496 1002 494
Morpheus_JOGL_dlg15_image 1628 921 707

Vertex Shaders Total Lines
Morpheus_JOGL_dlg01_triangle.vert 27
Morpheus_JOGL_dlg02_color.vert 28
Morpheus_JOGL_dlg03_animation.vert 85
Morpheus_JOGL_dlg07_lighting.vert 97
Morpheus_JOGL_dlg15_image.vert 80

21of36

APPENDICES

CODE, JAVADOC, AND COMMENT LINES
It can be meaningless to report lines of code for a project since a large number of lines could indicate
either program complexity or programmer inefficiency. These are reported here to provide an
indication of the actual coding involved to achieve particular features because an increasing amount of
dialog lines were taken up by providing local variables and overridden get(...)/set(...)
methods. Eleven of the fifteen dialog classes have well over 1000 lines, but only four have more than
500 lines devoted to adding new features or capabilities. These line counts, too, include all code,
JavaDoc, and extensive inline comments.

Dialogs Total Lines Local Variables Net New Lines
Morpheus_JOGL_dlg01_triangle 1035 363 672
Morpheus_JOGL_dlg02_color 402 280 122
Morpheus_JOGL_dlg03_animation 644 381 263
Morpheus_JOGL_dlg04_aspect 460 379 81
Morpheus_JOGL_dlg05_cube 826 411 415
Morpheus_JOGL_dlg06_mvpMx 1319 551 768
Morpheus_JOGL_dlg07_lighting 1067 664 403
Morpheus_JOGL_dlg08_surface 1234 782 452
Morpheus_JOGL_dlg09_text 1222 867 355
Morpheus_JOGL_dlg10_mouse 1553 918 635
Morpheus_JOGL_dlg11_points 1289 913 376
Morpheus_JOGL_dlg12_lines 1227 914 313
Morpheus_JOGL_dlg13_spheres 1316 1016 300
Morpheus_JOGL_dlg14_rods 1496 1002 494
Morpheus_JOGL_dlg15_image 1628 921 707

Vertex Shaders Total Lines
Morpheus_JOGL_dlg01_triangle.vert 27
Morpheus_JOGL_dlg02_color.vert 28
Morpheus_JOGL_dlg03_animation.vert 85
Morpheus_JOGL_dlg07_lighting.vert 97
Morpheus_JOGL_dlg15_image.vert 80

21of36

Fragment Shaders Total Lines
Morpheus_JOGL_dlg01_triangle.frag 23
Morpheus_JOGL_dlg02_color.frag 22
Morpheus_JOGL_dlg03_animation.frag 21
Morpheus_JOGL_dlg07_lighting.frag 92
Morpheus_JOGL_dlg15_image.vert.frag 88

22of36

Fragment Shaders Total Lines
Morpheus_JOGL_dlg01_triangle.frag 23
Morpheus_JOGL_dlg02_color.frag 22
Morpheus_JOGL_dlg03_animation.frag 21
Morpheus_JOGL_dlg07_lighting.frag 92
Morpheus_JOGL_dlg15_image.vert.frag 88

22of36

CONSTANTS, TYPEDEFS, & VARIABLES
The dialog inheritance trifurcates at Morpheus_JOGL_dlg10_mouse, which implements mouse
interaction. In the following table, red-tinted cells indicate the point-line branch (feature implemented
through simple manipulation of rendering mode), the green-tinted cells indicate the sphere/rod branch
(multiple geometry rendering), and the blue-tinted cells indicate the image/texture branch. The '+'
indicates when an element is first introduced into the code. The '*' indicates when the variable is locally
replaced via get(...)/set(...) methods in descendent dialogs. The get(...)/set(...)
methods are not, themselves, shown. If an element is never overridden, it may, in some cases, be
considered a constant within the program. I generally try to name constants in all caps, e.g., NDIM, but
in some cases this was not done. In those cases, either a longer, mix-case name seemed more readable
or the element would likely be a variable in a more general program.

Dialog

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
NDIM +
noAnimatorJWA +
trianglePositionArray +
triangleScaleFactor +
JOGLColor +
WHITE +
LIGHTGRAY +
MEDIUMGRAY +
DARKGRAY +
BLACK +
DARKRED +
PURERED +
LIGHTRED +
DARKGREEN +
PUREGREEN +
LIGHTGREEN +
DARKBLUE +
PUREBLUE +
LIGHTBLUE +
DARKYELLOW +
DARKBROWN +
PUREYELLOW +
LIGHTYELLOW +
LIGHTBROWN +
DARKPURPLE +

23of36

CONSTANTS, TYPEDEFS, & VARIABLES
The dialog inheritance trifurcates at Morpheus_JOGL_dlg10_mouse, which implements mouse
interaction. In the following table, red-tinted cells indicate the point-line branch (feature implemented
through simple manipulation of rendering mode), the green-tinted cells indicate the sphere/rod branch
(multiple geometry rendering), and the blue-tinted cells indicate the image/texture branch. The '+'
indicates when an element is first introduced into the code. The '*' indicates when the variable is locally
replaced via get(...)/set(...) methods in descendent dialogs. The get(...)/set(...)
methods are not, themselves, shown. If an element is never overridden, it may, in some cases, be
considered a constant within the program. I generally try to name constants in all caps, e.g., NDIM, but
in some cases this was not done. In those cases, either a longer, mix-case name seemed more readable
or the element would likely be a variable in a more general program.

Dialog

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
NDIM +
noAnimatorJWA +
trianglePositionArray +
triangleScaleFactor +
JOGLColor +
WHITE +
LIGHTGRAY +
MEDIUMGRAY +
DARKGRAY +
BLACK +
DARKRED +
PURERED +
LIGHTRED +
DARKGREEN +
PUREGREEN +
LIGHTGREEN +
DARKBLUE +
PUREBLUE +
LIGHTBLUE +
DARKYELLOW +
DARKBROWN +
PUREYELLOW +
LIGHTYELLOW +
LIGHTBROWN +
DARKPURPLE +

23of36

PUREPURPLE +
LIGHTPURPLE +
DisplayModeType +
nDisplayModes +
defaultDisplayMode +
GLCanvas + * * * * * * * * * * * * * *
vShaderID + * * * * * * * * * * * * * *
fShaderID + * * * * * * * * * * * * * *
shaderProgramID + * * * * * * * * * * * * * *
vaoIDBuffer + * * * * * * * * * * * * * *
vertexIDBuffer + * * * * * * * * * * * * * *
vertexPositionID + * * * * * * * * * * * * * *
vertexPositionBuffer + * * * * * * * * * * * * * *
shaderBaseString + * * * * * * * * * * * * * *
titleString + * * * * * * * * * * * * * *
bgColor + * * * * * * * * * * * * * *
vertexPositionArray + * * * * * * * * * * * * * *
displayMode + * * * * * * * * * * * * * *
enablePointSize + * * * * * * * * * * * * * *
pointSize + * * * * * * * * * * * * * *
vertexColorID + * * * * * * * * * * * * *
vertexColorIDBuffer + * * * * * * * * * * * * *
vertexColorBuffer + * * * * * * * * * * * * *
vertexColorArray + * * * * * * * * * * * * *
MXDIM +
MAX_FRAME_COUNT +
animator + * * * * * * * * * * * *
frameCount + * * * * * * * * * * * *
mvpMatrixID + * * * * * * * * * * * *
animationRotationMx + * * * * * * * * * * * *
animationThetaXDelta + * * * * * * * * * * * *
animationThetaYDelta + * * * * * * * * * * * *
animationThetaZDelta + * * * * * * * * * * * *
mvpMx + * * * * * * * * * * * *
animatorJWA +
aspectMx + * * * * * * * * * * *
colorMode + * * * * * * * * * *
colorModeChanged + * * * * * * * * * *

24of36

PUREPURPLE +
LIGHTPURPLE +
DisplayModeType +
nDisplayModes +
defaultDisplayMode +
GLCanvas + * * * * * * * * * * * * * *
vShaderID + * * * * * * * * * * * * * *
fShaderID + * * * * * * * * * * * * * *
shaderProgramID + * * * * * * * * * * * * * *
vaoIDBuffer + * * * * * * * * * * * * * *
vertexIDBuffer + * * * * * * * * * * * * * *
vertexPositionID + * * * * * * * * * * * * * *
vertexPositionBuffer + * * * * * * * * * * * * * *
shaderBaseString + * * * * * * * * * * * * * *
titleString + * * * * * * * * * * * * * *
bgColor + * * * * * * * * * * * * * *
vertexPositionArray + * * * * * * * * * * * * * *
displayMode + * * * * * * * * * * * * * *
enablePointSize + * * * * * * * * * * * * * *
pointSize + * * * * * * * * * * * * * *
vertexColorID + * * * * * * * * * * * * *
vertexColorIDBuffer + * * * * * * * * * * * * *
vertexColorBuffer + * * * * * * * * * * * * *
vertexColorArray + * * * * * * * * * * * * *
MXDIM +
MAX_FRAME_COUNT +
animator + * * * * * * * * * * * *
frameCount + * * * * * * * * * * * *
mvpMatrixID + * * * * * * * * * * * *
animationRotationMx + * * * * * * * * * * * *
animationThetaXDelta + * * * * * * * * * * * *
animationThetaYDelta + * * * * * * * * * * * *
animationThetaZDelta + * * * * * * * * * * * *
mvpMx + * * * * * * * * * * * *
animatorJWA +
aspectMx + * * * * * * * * * * *
colorMode + * * * * * * * * * *
colorModeChanged + * * * * * * * * * *

24of36

mMx + * * * * * * * * *
vMx + * * * * * * * * *
pMx + * * * * * * * * *
modelRMx + * * * * * * * * *
modelHMx + * * * * * * * * *
modelTMx + * * * * * * * * *
viewRMx + * * * * * * * * *
viewHMx + * * * * * * * * *
viewTMx + * * * * * * * * *
mouseRMx + * * * * * * * * *
mouseHMx + * * * * * * * * *
mouseTMx + * * * * * * * * *
vpMatrix + * * * * * * * * *
toggleCenterData + * * * * * * * * *
perspectiveProjection + * * * * * * * * *
positionMinMaxArray + * * * * * * * * *
viewLeft +
viewRight +
viewTop +
viewBottom +
viewNear +
viewFar +
viewBaseMx +
perspectiveProjMx +
orthogonalProjMx +
DEFAULT_ALPHA_LEVEL +
DEFAULT_N_ALPHA_LEVELS +
mvMatrixID + * * * * * * * *
mvitMatrixID + * * * * * * * *
mvMx + * * * * * * * *
mvitMx + * * * * * * * *
alphaID + * * * * * * * *
alphaLevel + * * * * * * * *
lightsOnID + * * * * * * * *
lightsOn + * * * * * * * *
vertexNormalID + * * * * * * * *
vertexNormalIDBuffer + * * * * * * * *
vertexNormalArray + * * * * * * * *

25of36

mMx + * * * * * * * * *
vMx + * * * * * * * * *
pMx + * * * * * * * * *
modelRMx + * * * * * * * * *
modelHMx + * * * * * * * * *
modelTMx + * * * * * * * * *
viewRMx + * * * * * * * * *
viewHMx + * * * * * * * * *
viewTMx + * * * * * * * * *
mouseRMx + * * * * * * * * *
mouseHMx + * * * * * * * * *
mouseTMx + * * * * * * * * *
vpMatrix + * * * * * * * * *
toggleCenterData + * * * * * * * * *
perspectiveProjection + * * * * * * * * *
positionMinMaxArray + * * * * * * * * *
viewLeft +
viewRight +
viewTop +
viewBottom +
viewNear +
viewFar +
viewBaseMx +
perspectiveProjMx +
orthogonalProjMx +
DEFAULT_ALPHA_LEVEL +
DEFAULT_N_ALPHA_LEVELS +
mvMatrixID + * * * * * * * *
mvitMatrixID + * * * * * * * *
mvMx + * * * * * * * *
mvitMx + * * * * * * * *
alphaID + * * * * * * * *
alphaLevel + * * * * * * * *
lightsOnID + * * * * * * * *
lightsOn + * * * * * * * *
vertexNormalID + * * * * * * * *
vertexNormalIDBuffer + * * * * * * * *
vertexNormalArray + * * * * * * * *

25of36

vertexNormalBuffer + * * * * * * * *
showAxes + * * * * * * *
axisVAOBuffer + * * * * * * *
axisVertexPositionIDBuffer + * * * * * * *
axisVertexPositionArray + * * * * * * *
axisVertexPositionBuffer + * * * * * * *
axisVertexColorIDBuffer + * * * * * * *
axisVertexColorArray + * * * * * * *
axisVertexColorBuffer + * * * * * * *
axisVertexNormalIDBuffer + * * * * * * *
axisVertexNormalArray + * * * * * * *
axisVertexNormalBuffer + * * * * * * *
showText + * * * * * *
textShaderProg + * * * * * *
vaoTextBuffer + * * * * * *
textRegionUtil + * * * * * *
renderState + * * * * * *
regionRenderer + * * * * * *
font +
fontSet +
fontFamily +
fontStyleBits +
fontSize +
sampleCount +
firstMouseDrag + * * * * *
oldMouseX + * * * * *
oldMouseY + * * * * *
newMouseX + * * * * *
newMouseY + * * * * *
maxPointCount +
pointCount +
currentPoint +
maxLineCount +
lineCount +
currentLine +
maxShapeCount + *
currentShape + *
shapeCount + *

26of36

vertexNormalBuffer + * * * * * * * *
showAxes + * * * * * * *
axisVAOBuffer + * * * * * * *
axisVertexPositionIDBuffer + * * * * * * *
axisVertexPositionArray + * * * * * * *
axisVertexPositionBuffer + * * * * * * *
axisVertexColorIDBuffer + * * * * * * *
axisVertexColorArray + * * * * * * *
axisVertexColorBuffer + * * * * * * *
axisVertexNormalIDBuffer + * * * * * * *
axisVertexNormalArray + * * * * * * *
axisVertexNormalBuffer + * * * * * * *
showText + * * * * * *
textShaderProg + * * * * * *
vaoTextBuffer + * * * * * *
textRegionUtil + * * * * * *
renderState + * * * * * *
regionRenderer + * * * * * *
font +
fontSet +
fontFamily +
fontStyleBits +
fontSize +
sampleCount +
firstMouseDrag + * * * * *
oldMouseX + * * * * *
oldMouseY + * * * * *
newMouseX + * * * * *
newMouseY + * * * * *
maxPointCount +
pointCount +
currentPoint +
maxLineCount +
lineCount +
currentLine +
maxShapeCount + *
currentShape + *
shapeCount + *

26of36

modelRMxArray + *
modelHMxArray + *
modelTMxArray + *
modelColorArray + *
nRodRadii +
rodRadiusIndex +
rodRadius +
rodScaleFactor +
nRodSections +
textureID +
texture +
originalTextureData +
texCoordArray +
texCoordIDBuffer +
texCoordBuffer +
texCoordShaderLoc +
iSample +
asImage +
needsGeometryRegeneration +
useTextureID +
useTexture +

27of36

modelRMxArray + *
modelHMxArray + *
modelTMxArray + *
modelColorArray + *
nRodRadii +
rodRadiusIndex +
rodRadius +
rodScaleFactor +
nRodSections +
textureID +
texture +
originalTextureData +
texCoordArray +
texCoordIDBuffer +
texCoordBuffer +
texCoordShaderLoc +
iSample +
asImage +
needsGeometryRegeneration +
useTextureID +
useTexture +

27of36

METHODS
The dialog inheritance trifurcates at Morpheus_JOGL_dlg10_mouse, which implements mouse
interaction. In the following table, red-tinted cells indicate the point/line branch (feature implemented
through simple manipulation of rendering mode), the green-tinted cells indicate the sphere/rod branch
(multiple geometry rendering), and the blue-tinted cells indicate the image/texture branch. The '+'
indicates when a method is first introduced into the code. The '*' indicates when it is overridden in
descendent dialogs. If no '+' is associated with a method, this indicates a system method that must be
overridden, e.g. a required JOGL method or listener, within the program. Each dialog has a
main(...) method, not shown, to allow for standalone execution.

Dialog

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
IncDisplayMode(...) +
pointSizeFunction(...) +
toggleEnablePointSize(...) +
getVertexNumber(...) +
setBGColor(...) +
initOverrides(...) + * * * * * * *
setupDialog(...) +
generateGeometry(...) + * * * * * * * *
init(...) * * * * * * * * * *
reshape(...) * * *
display(...) * * * * * *
dispose(...) * * *
loadBuffers(...) + * * * *
drawScene(...) + * * * * * *
loadShaderFile(...) +
initVertexShader(...) +
initFragmentShader(...) +
initShaderProgram(...) +
printShaderLog(...) +
printProgramLog(...) +
keyTyped(...) *
keyPressed(...) * * * * * * * * * * *
keyReleased(...) *
randomGLBackgroundColor(...) +
incFrameCount(...) +
setRandomRotation(...) +
updateAnimationRotationMx(...) +

28of36

METHODS
The dialog inheritance trifurcates at Morpheus_JOGL_dlg10_mouse, which implements mouse
interaction. In the following table, red-tinted cells indicate the point/line branch (feature implemented
through simple manipulation of rendering mode), the green-tinted cells indicate the sphere/rod branch
(multiple geometry rendering), and the blue-tinted cells indicate the image/texture branch. The '+'
indicates when a method is first introduced into the code. The '*' indicates when it is overridden in
descendent dialogs. If no '+' is associated with a method, this indicates a system method that must be
overridden, e.g. a required JOGL method or listener, within the program. Each dialog has a
main(...) method, not shown, to allow for standalone execution.

Dialog

01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
IncDisplayMode(...) +
pointSizeFunction(...) +
toggleEnablePointSize(...) +
getVertexNumber(...) +
setBGColor(...) +
initOverrides(...) + * * * * * * *
setupDialog(...) +
generateGeometry(...) + * * * * * * * *
init(...) * * * * * * * * * *
reshape(...) * * *
display(...) * * * * * *
dispose(...) * * *
loadBuffers(...) + * * * *
drawScene(...) + * * * * * *
loadShaderFile(...) +
initVertexShader(...) +
initFragmentShader(...) +
initShaderProgram(...) +
printShaderLog(...) +
printProgramLog(...) +
keyTyped(...) *
keyPressed(...) * * * * * * * * * * *
keyReleased(...) *
randomGLBackgroundColor(...) +
incFrameCount(...) +
setRandomRotation(...) +
updateAnimationRotationMx(...) +

28of36

setUniforms3D(...) + * *
initMx(...) + *
buildMVPMx(...) + * * * *
printMx(...) +
printMxR(...) +
makeCube(...) + *
adjustForColorMode(...) + *
tweakGeometry(...) + *
setModelToViewMx(...) + * * * *
reInitMx(...) + *
buildAndGetPMx(...) +
buildAndGetVMx(...) +
buildAndGetMMx(...) +
setAxisMinMax(...) +
showTransformedData(...) +
setColorArray(...) +
calculateNormalVectors(...) +
makeSphere(...) +
generateAxisGeometry(...) +
loadAxisBuffers(...) +
drawAxes(...) + *
buildAxisMVPMx(...) + *
getString(...) + *
drawText(...) +
getTextPVMMx(...) +
mouseMxReset(...) +
mouseClicked(...) *
mousePressed(...) *
mouseReleased(...) *
mouseEntered(...) *
mouseExited(...) *
mouseDragged(...) *
mouseMoved(...) *
mouseWheelMoved(...) *
mouseRotation(...) +
mouseTranslation(...) +
mouseScaling(...) +
windowToViewCoordinates(...) +

29of36

setUniforms3D(...) + * *
initMx(...) + *
buildMVPMx(...) + * * * *
printMx(...) +
printMxR(...) +
makeCube(...) + *
adjustForColorMode(...) + *
tweakGeometry(...) + *
setModelToViewMx(...) + * * * *
reInitMx(...) + *
buildAndGetPMx(...) +
buildAndGetVMx(...) +
buildAndGetMMx(...) +
setAxisMinMax(...) +
showTransformedData(...) +
setColorArray(...) +
calculateNormalVectors(...) +
makeSphere(...) +
generateAxisGeometry(...) +
loadAxisBuffers(...) +
drawAxes(...) + *
buildAxisMVPMx(...) + *
getString(...) + *
drawText(...) +
getTextPVMMx(...) +
mouseMxReset(...) +
mouseClicked(...) *
mousePressed(...) *
mouseReleased(...) *
mouseEntered(...) *
mouseExited(...) *
mouseDragged(...) *
mouseMoved(...) *
mouseWheelMoved(...) *
mouseRotation(...) +
mouseTranslation(...) +
mouseScaling(...) +
windowToViewCoordinates(...) +

29of36

quaternionRotationMatrix(...) +
arcBall(...) +
updateGeometry(...) (first branch) + *
getCoordsInSphere(...) (first branch) +
setModelRMxArray(...) +
setModelHMxArray(...) +
setModelTMxArray(...) +
setModelColorArray(...) +
updateGeometry(...) (second branch) +
getCoordsInSphere(...) (second branch) +
loadImage(...) +
regenerateGeometry(...) +
makeRectangle(...) +
adjustImageAspect(...) +
setupImage(...) +

30of36

quaternionRotationMatrix(...) +
arcBall(...) +
updateGeometry(...) (first branch) + *
getCoordsInSphere(...) (first branch) +
setModelRMxArray(...) +
setModelHMxArray(...) +
setModelTMxArray(...) +
setModelColorArray(...) +
updateGeometry(...) (second branch) +
getCoordsInSphere(...) (second branch) +
loadImage(...) +
regenerateGeometry(...) +
makeRectangle(...) +
adjustImageAspect(...) +
setupImage(...) +

30of36

DOCUMENTATION – Morpheus_eProbe
IMPORTANT: Morpheus_JOGL is built directly atop Morpheus_eProbe. Hence, the following
installation, program requirements, execution, source, JavaDoc, and Mac-specific sections from the
Morpheus_eProbe User's Guide apply equally well to Morpheus_JOGL, simply substitute “JOGL” for
“eProbe” in the text and figures where appropriate. Morpheus_JOGL-specific icons are provided.

Installation
To install the program, download the latest .zip file and unzip it. Note that on Windows there may be a
distinction of simply looking inside of an archive versus actually extracting it. The program archives
are named as:

morpheus_eProbe_YYYYMMDD.zip

The year of the revision is substituted for YYYY, then month for MM, and the day for DD, e.g.,
morpheus_eProbe_20161221.zip.

Unzipping this file will produce a directory with the same name as the archive sans “.zip”. The
program and associated files are found within that directory.

Program Requirements
It is only assumed that you have an installed a properly configured Java environment to run this
program. Mac users should see the “Note to Mac OS X Users” section below.

Execution
To run the program, navigate into the directory created above and double-click on the file (2),

morpheus_eProbe.jar

The program should execute, and you should see a screen like this containing a concise listing of the
available information:

31of36

DOCUMENTATION – Morpheus_eProbe
IMPORTANT: Morpheus_JOGL is built directly atop Morpheus_eProbe. Hence, the following
installation, program requirements, execution, source, JavaDoc, and Mac-specific sections from the
Morpheus_eProbe User's Guide apply equally well to Morpheus_JOGL, simply substitute “JOGL” for
“eProbe” in the text and figures where appropriate. Morpheus_JOGL-specific icons are provided.

Installation
To install the program, download the latest .zip file and unzip it. Note that on Windows there may be a
distinction of simply looking inside of an archive versus actually extracting it. The program archives
are named as:

morpheus_eProbe_YYYYMMDD.zip

The year of the revision is substituted for YYYY, then month for MM, and the day for DD, e.g.,
morpheus_eProbe_20161221.zip.

Unzipping this file will produce a directory with the same name as the archive sans “.zip”. The
program and associated files are found within that directory.

Program Requirements
It is only assumed that you have an installed a properly configured Java environment to run this
program. Mac users should see the “Note to Mac OS X Users” section below.

Execution
To run the program, navigate into the directory created above and double-click on the file (2),

morpheus_eProbe.jar

The program should execute, and you should see a screen like this containing a concise listing of the
available information:

31of36

As you can see, the program shows the name and version of the detected operating system and the
system architecture upon which it is running. It also shows the names and versions of the Java Virtual
Machines (VM) and Runtime Environment (RTE).

The program also reports on the memory environment of the Java VM.

As distributed, the program will report on the versions of the available OpenGL, JOGL, and Java3D
environments. Access to this functionality, which the program does not require, requires the availability
of JOGL libraries. Java3D is another library set that, in turn, requires JOGL. And JOGL is required to
query the OpenGL capabilities. The necessary libraries are found in the ./lib subdirectory. However, the
program, morpheus_eProbe.jar, can run without these libraries (just move the .jar file to another
directory). If the JOGL and Java3D libraries are available on the system’s Java search path, then their
versions will be reported. If not, a simple ‘not detected’ message will be seen.

The “Java Environment” submenu allows the choice of two output formats...

“Concise” – as seen above, this is the basic information about the Java environment.

“Verbose” – is a dump to the screen of everything the probe captures about the environment. Here is a
partial look at a verbose listing:

32of36

As you can see, the program shows the name and version of the detected operating system and the
system architecture upon which it is running. It also shows the names and versions of the Java Virtual
Machines (VM) and Runtime Environment (RTE).

The program also reports on the memory environment of the Java VM.

As distributed, the program will report on the versions of the available OpenGL, JOGL, and Java3D
environments. Access to this functionality, which the program does not require, requires the availability
of JOGL libraries. Java3D is another library set that, in turn, requires JOGL. And JOGL is required to
query the OpenGL capabilities. The necessary libraries are found in the ./lib subdirectory. However, the
program, morpheus_eProbe.jar, can run without these libraries (just move the .jar file to another
directory). If the JOGL and Java3D libraries are available on the system’s Java search path, then their
versions will be reported. If not, a simple ‘not detected’ message will be seen.

The “Java Environment” submenu allows the choice of two output formats...

“Concise” – as seen above, this is the basic information about the Java environment.

“Verbose” – is a dump to the screen of everything the probe captures about the environment. Here is a
partial look at a verbose listing:

32of36

The “Exit” submenu item shuts down the program, as does the window-close button, whatever that
may look like on your system.

The ./icons directory contains some images/icons you can use to pretty-up the program. The image was
listed in Google search as “Labeled for reuse with modification”. I cropped and rescaled the original
image and converted it to .png and .icns (Mac icon) formats. The original was found here:

http://www.accesspaymentsystems.com/wp-content/uploads/2012/05/MagnifyingGlass_20747271.jpg

I am not sure how to change the program icon on Windows or Linux environments, but a .png file is
provided for this purpose. On an OS X system, you can right-click on the .jar file and select the “Get
Info” menu choice. When that window opens, simply drag and drop the .icns file into the upper, left
area of the info window (over the current icon).
(2) Note that the program is setup to only work properly if executed from this directory. I have not provided the .bat and .sh
files, as with Morpheus et al., that would preserve the originating directory needed to find the associated library files. These
files are not necessary, however, so if you move just this .jar file, the program will operate and report on the system-wide
availability of Java-based OpenGL capabilities.

Source
The program was developed as a NetBeans project. I did not spend too much time investigating how to
properly package project source for distribution. Instead, I just zipped the source directory. NetBeans
user’s should be able to figure it out. Others can figure out how to make use of the .java files. The
.form file is what NetBeans uses to manage the visual editing of the main program window.

Compiling the program, as is, will require the inclusion in the build of JOGL and Java3D files. The
necessary files can be found at http://jogamp.org/jogl/www/

The main Morpheus_eProbe does not require these, but the two probes, for JOGL and Java3D, do. To
divorce Morpheus_eProbe from the JOGL and Java3D libraries, the JOGL and Java3D-specific probes
accept as a constructor parameter a Morpheus_eProbe object. They then do their work, and use the
probe’s public functions to set the OpenGL-specific strings. To compile the program without these

33of36

The “Exit” submenu item shuts down the program, as does the window-close button, whatever that
may look like on your system.

The ./icons directory contains some images/icons you can use to pretty-up the program. The image was
listed in Google search as “Labeled for reuse with modification”. I cropped and rescaled the original
image and converted it to .png and .icns (Mac icon) formats. The original was found here:

http://www.accesspaymentsystems.com/wp-content/uploads/2012/05/MagnifyingGlass_20747271.jpg

I am not sure how to change the program icon on Windows or Linux environments, but a .png file is
provided for this purpose. On an OS X system, you can right-click on the .jar file and select the “Get
Info” menu choice. When that window opens, simply drag and drop the .icns file into the upper, left
area of the info window (over the current icon).
(2) Note that the program is setup to only work properly if executed from this directory. I have not provided the .bat and .sh
files, as with Morpheus et al., that would preserve the originating directory needed to find the associated library files. These
files are not necessary, however, so if you move just this .jar file, the program will operate and report on the system-wide
availability of Java-based OpenGL capabilities.

Source
The program was developed as a NetBeans project. I did not spend too much time investigating how to
properly package project source for distribution. Instead, I just zipped the source directory. NetBeans
user’s should be able to figure it out. Others can figure out how to make use of the .java files. The
.form file is what NetBeans uses to manage the visual editing of the main program window.

Compiling the program, as is, will require the inclusion in the build of JOGL and Java3D files. The
necessary files can be found at http://jogamp.org/jogl/www/

The main Morpheus_eProbe does not require these, but the two probes, for JOGL and Java3D, do. To
divorce Morpheus_eProbe from the JOGL and Java3D libraries, the JOGL and Java3D-specific probes
accept as a constructor parameter a Morpheus_eProbe object. They then do their work, and use the
probe’s public functions to set the OpenGL-specific strings. To compile the program without these

33of36

libraries, simply comment out the indicated parts in the Morpheus_eProbe_startup.java file and don’t
include the JOGL and Java3D probe classes.

Internally, the results of the probe are returned as a single newline-delimited, formatted string that can,
in turn, be sent to any variety of text display devices – edit window, console display, etc. For instance,
the return string might look like, where “\t” and “\n” indicate tab and newline characters, respectively:

“Operating System...\n-------------------\n\t Name: Mac OS X”

and when displayed would look like:

Operating System...

 Name: Mac OS X

Future versions may include query methods to return individual string or numeric information.

JavaDoc
The source code has been extensively commented and documented using the JavaDoc markup system.
This is then used to produce HTML code documentation. You can view these files by double-clicking
on the index.html file in the javadoc directory created when the archive was unpacked. You can also
access these files by choosing to open a file in your browser, navigating to the javadoc subdirectory of
the Morpheus_eProbe program directory, and opening index.html.

Note to Mac OS X Users
I develop on a Mac, so there may be issues of which I am not aware running the program on Linux and
Windows platforms. If you find any issues on these platforms, please let me know at the address given
in the “Contact Info” section below.

For the Mac, there may be a couple of issues you need to consider.

1. You should have your OS X system set up to not run just any old software you download from the
web, such as morpheus_eProbe. In this case, when you try to run morpheus_eProbe, you will see a
message like the following:

34of36

libraries, simply comment out the indicated parts in the Morpheus_eProbe_startup.java file and don’t
include the JOGL and Java3D probe classes.

Internally, the results of the probe are returned as a single newline-delimited, formatted string that can,
in turn, be sent to any variety of text display devices – edit window, console display, etc. For instance,
the return string might look like, where “\t” and “\n” indicate tab and newline characters, respectively:

“Operating System...\n-------------------\n\t Name: Mac OS X”

and when displayed would look like:

Operating System...

 Name: Mac OS X

Future versions may include query methods to return individual string or numeric information.

JavaDoc
The source code has been extensively commented and documented using the JavaDoc markup system.
This is then used to produce HTML code documentation. You can view these files by double-clicking
on the index.html file in the javadoc directory created when the archive was unpacked. You can also
access these files by choosing to open a file in your browser, navigating to the javadoc subdirectory of
the Morpheus_eProbe program directory, and opening index.html.

Note to Mac OS X Users
I develop on a Mac, so there may be issues of which I am not aware running the program on Linux and
Windows platforms. If you find any issues on these platforms, please let me know at the address given
in the “Contact Info” section below.

For the Mac, there may be a couple of issues you need to consider.

1. You should have your OS X system set up to not run just any old software you download from the
web, such as morpheus_eProbe. In this case, when you try to run morpheus_eProbe, you will see a
message like the following:

34of36

If you get this, open the “System Preferences” under the Apple icon in the upper left corner of the
screen. Then, click on the “Security & Privacy” icon on the top row. You should see on the panel that
opens a message about Morpheus_eProbe being blocked and a button that says “Open Anyway”:

Clicking on this button will bring up another window confirming your request:

Click “Open”, and the program should run. You will then be able to run the program from then on until
you download a new version or re-unzip the old one.

2. The second possible issue you might have is that Apple used to distribute outdated versions of
Java3D libraries with its operating system. I cannot find these files any longer on any of my systems

35of36

If you get this, open the “System Preferences” under the Apple icon in the upper left corner of the
screen. Then, click on the “Security & Privacy” icon on the top row. You should see on the panel that
opens a message about Morpheus_eProbe being blocked and a button that says “Open Anyway”:

Clicking on this button will bring up another window confirming your request:

Click “Open”, and the program should run. You will then be able to run the program from then on until
you download a new version or re-unzip the old one.

2. The second possible issue you might have is that Apple used to distribute outdated versions of
Java3D libraries with its operating system. I cannot find these files any longer on any of my systems

35of36

running OS X 10.11.6 or 10.12. I cannot ascertain if they are no longer distributed or if I have
somehow permanently deleted them. You should be able to tell if they (or some other inappropriate
versions) are there by dragging the morpheus_eProbe.jar out of its own directory (where the latest
library files are stored). If you then run the program and get any message other than “not detected” for
the OpenGL information, you might have to move or rename some files – and you should probably do
so anyway.

These files are found in the /System/Library/Java/Extensions directory. They include any file with j3d
in its name and the file, vecmath.jar. Just create another directory, say hold_j3d, and move the files into
it. You may need administrator privileges to make these changes. There is an app, mac_osx_prepare,
distributed with Morpheus that does this, and another, mac_osx_unprepare, that undoes it. I have not
included this app here because I think it is becoming less of an issue for general users with newer
operating systems.

36of36

running OS X 10.11.6 or 10.12. I cannot ascertain if they are no longer distributed or if I have
somehow permanently deleted them. You should be able to tell if they (or some other inappropriate
versions) are there by dragging the morpheus_eProbe.jar out of its own directory (where the latest
library files are stored). If you then run the program and get any message other than “not detected” for
the OpenGL information, you might have to move or rename some files – and you should probably do
so anyway.

These files are found in the /System/Library/Java/Extensions directory. They include any file with j3d
in its name and the file, vecmath.jar. Just create another directory, say hold_j3d, and move the files into
it. You may need administrator privileges to make these changes. There is an app, mac_osx_prepare,
distributed with Morpheus that does this, and another, mac_osx_unprepare, that undoes it. I have not
included this app here because I think it is becoming less of an issue for general users with newer
operating systems.

36of36

