
Morpheus et al.
Java Edition

(Revision: 20140704)

User's Guide
Dennis E. Slice

Morpheus et al., Java Edition

Program revision: 20140704
Document version: June 29, 2014

Author: Dennis E. Slice
Department of Scientific Computing
The Florida State University
Tallahassee, Florida, USA 32306

and
Department of Anthropology
University of Vienna
Vienna, Austria

Contact: morphlab@sc.fsu.edu

Cover Art: The image on the cover was generated by the author in Morpheus et al. It
is the skull of a cynomolgus macaque (Macaca fascicularis) scanned by the FSU
MorphLab's Breuckmann optoTop-HE structured light scanner. The surface was
displayed as black vertices only on a white background. The original scan contains
887256 faces defined over 458797 vertices.

mailto:morphlab@sc.fsu.edu

Morpheus et al.
Java Edition

-
Dennis E. Slice

[blank]

Table of Contents
 1 Introduction..1

 1.1 Design Goals..1
 1.1.1 Platform independence..2
 1.1.2 Flexibility..3
 1.1.3 Extensibility..4

 1.2 Operational Model..5
 1.3 First Look...7
 1.4 What's new?...8
 1.5 References...9

 2 Installation and Execution..11
 2.1 Installation...11

 2.1.1 Example Data Files...13
 2.1.2 Icons...13

 2.2 Execution...13
 2.3 Trouble Shooting..14

 3 The Listing Pane...17
 4 The Graphics Pane..19

 4.1 Plot Options...27
 4.1.1 General Plotting Options...27
 4.1.2 Group Plotting Options..28

 5 An Example..37
 6 More Complex Examples...49

 6.1 Whole-Configuration Reconstruction (with Batch Processing).......................49
 6.2 High-dimensional Data..56
 6.3 References..60

 7 Commands...63
 7.1 File...63

 7.1.1 File|Open..64
 7.1.2 File|Append..65
 7.1.3 File|Save As..65
 7.1.4 File|Close..66
 7.1.5 File|Import..66
 7.1.6 File|Export..67
 7.1.7 File|New from images..67
 7.1.8 File|New from images|2D...68
 7.1.9 File|New from images|3D...68
 7.1.10 File|Batch...69
 7.1.11 File|Log...69
 7.1.12 File|Log|Start...70
 7.1.13 File|Log|Stop..70
 7.1.14 File|Exit..70

 7.2 View...70
 7.2.1 View|Objects...71
 7.2.2 View|Objects|Info...71
 7.2.3 View|Objects|Object i...72

 7.2.4 View|Objects|Groups...73
 7.2.5 View|Objects|List|Transformation parameters.....................................73
 7.2.6 View|Points...74
 7.2.7 View|Points|Report...74
 7.2.8 View|Points|Missing...75
 7.2.9 View|Points|Links..76
 7.2.10 View|Points|Centroid Size..76
 7.2.11 View|Points|Superimposition...77
 7.2.12 View|Points|Superimposition|Options...77
 7.2.13 View|Points|Superimposition|SS...78
 7.2.14 View|Points|Superimposition|SS|Mean...78
 7.2.15 View|Points|Superimposition|SS|Initial Reference............................78
 7.2.16 View|Points|Superimposition|SS|Origin..78
 7.2.17 View|User...78
 7.2.18 View|User|UserVars...79
 7.2.19 View|User|Defines..79
 7.2.20 View|Measurements..80
 7.2.21 View|Measurements|Definitions...80
 7.2.22 View|Measurements|Values...80

 7.3 Edit..81
 7.3.1 Edit|Objects..82
 7.3.2 Edit|Objects|Group..82
 7.3.3 Edit|Objects|Group|By Count...83
 7.3.4 Edit|Objects|Group|File..84
 7.3.5 Edit|Objects|Group|Label..85
 7.3.6 Edit|Objects|Group|Ungroup...85
 7.3.7 Edit|Objects|Delete..85
 7.3.8 Edit|Objects|Keep..86
 7.3.9 Edit|Objects|Reflect...87
 7.3.10 Edit|Objects|Rename...87
 7.3.11 Edit|Objects|Swap...87
 7.3.12 Edit|Objects|Add dimension...88
 7.3.13 Edit|Objects|Merge with file...88
 7.3.14 Edit|Points..89
 7.3.15 Edit|Points|Adjust..90
 7.3.16 Edit|Points|Append..90
 7.3.17 Edit|Points|Copy..91
 7.3.18 Edit|Points|Delete..91
 7.3.19 Edit|Points|Demote..92
 7.3.20 Edit|Points|Insert...93
 7.3.21 Edit|Points|Label...93
 7.3.22 Edit|Points|MakeMissing...94
 7.3.23 Edit|Points|Promote...94
 7.3.24 Edit|Points|Swap...95
 7.3.25 Edit|Points|Compute..96
 7.3.26 Edit|Points|Compute|Distance-to-curve points..................................96
 7.3.27 Edit|Points|Compute|Sample from curve...97
 7.3.28 Edit|Points|Sample from curve|Sample...98

 7.3.29 Edit|Points|Sample from curve|Merge...99
 7.3.30 Edit|Points|Links...99
 7.3.31 Edit|Points|Links|Add...99
 7.3.32 Edit|Points|Links|Remove...100
 7.3.33 Edit|Points|Links|Clear...101
 7.3.34 Edit|Points|Superimposition..101
 7.3.35 Edit|Points|Superimposition|Options..101
 7.3.36 Edit|Points|Superimposition|Options|Set.......................................102
 7.3.37 Edit|Points|Superimposition|Options|Restore.................................103
 7.3.38 Edit|User..103
 7.3.39 Edit|User|UserVars..104
 7.3.40 Edit|User|UserVars|Edit..104
 7.3.41 Edit|User|UserVars|Add..104
 7.3.42 Edit|User|UserVars|Delete..104
 7.3.43 Edit|User|Defines...105
 7.3.44 Edit|User|Defines|Set..105
 7.3.45 Edit|User|Defines|Clear...105
 7.3.46 Edit|User|Measurements...106
 7.3.47 Edit|Measurements|Add...106
 7.3.48 Edit|Measurements|Remove...107
 7.3.49 Edit|Measurements|Clear..107

 7.4 Process...108
 7.4.1 Process|Points..108
 7.4.2 Process|Points|Superimposition...109
 7.4.3 Process|Points|Superimposition|OPA..109
 7.4.4 Process|Points|Superimposition|GPA..110
 7.4.5 Process|Points|Superimposition|RF...110
 7.4.6 Process|Points|Superimposition|GRF..110
 7.4.7 Process|Points|Superimposition|BSC..111
 7.4.8 Process|Points|Superimposition|Restore..111
 7.4.9 Process|Points|Superimposition|Restore|All......................................112
 7.4.10 Process|Points|Superimposition|Restore|Scale................................112
 7.4.11 Process|Points|Superimposition|Restore|Rotation...........................113
 7.4.12 Process|Points|Superimposition|Restore|Translation......................113
 7.4.13 Process|Points|Missing data...113
 7.4.14 Process|Points|Missing data|Impute..114
 7.4.15 Process|Points|Missing data|Impute|Simple mean substitution......114
 7.4.16 Process|Points|Missing data|Impute|GPA mean substitution..........115

 7.5 Analyze..118
 7.6 Save...118

 7.6.1 Save|Objects...118
 7.6.2 Save|Objects|Grand mean..118
 7.6.3 Save|Objects|Group means..119
 7.6.4 Save|Objects|Transformation parameters...119
 7.6.5 Save|Points...119
 7.6.6 Save|Points|Centroid Size..119
 7.6.7 Save|Points|Analysis..120
 7.6.8 Save|User...121

 7.6.9 Save|Measurements..121
 7.7 System...122

 7.7.1 System|Stop graphics update...122
 7.7.2 System|Desktop..122
 7.7.3 System|Deskptop|Size..123
 7.7.4 System|Desktop|Defaults...123
 7.7.5 System|Parameters...123
 7.7.6 System|Parameters|List...124
 7.7.7 System|Desktop|Parameters|Set...124
 7.7.8 System|Listing font...125
 7.7.9 System|Desktop|Listing Font|Default..125
 7.7.10 System|Desktop|Listing Font|Set..125

 7.8 Help...125
 7.8.1 Help|About...126

 7.9 Unix-like Commands..126
 7.9.1 ls...127
 7.9.2 pwd...127
 7.9.3 cls...127

 8 The Configuration File..129
 9 Batch Processing..131

 9.1 Batch-specific commands...131
 9.1.1 stop...131
 9.1.2 time...131

 10 Morpheus Data Files (.mdt)...133
 11 Other Morpheus Formats..141

 11.1 Morpheus grouping files (.grp)..141
 12 Other Supported Data Formats...143

 12.1 Integrate (.lnd)..143
 12.2 Morphologika (.txt)...144
 12.3 R (.Rdata)...145
 12.4 Raw (.raw)..146
 12.5 TPS (.tps)..146
 12.6 NTSYSpc (.nts)...148

 13 Surface Formats...151
 13.1 Wavefront (.obj)..151
 13.2 Polygon File Format (Stanford Triangle Format) (.ply)...............................152

ix

Preface
I hope that my students learn some lessons from my own experience and
mistakes. One of the more important of those is that few things are ever
perfected or, even, finished. Instead, things often reach a level of usefulness
that is sufficient to be shared. Such is the case with this latest version of
Morpheus et al. I have worked on it for years, and I could easily work on it for
many more and still not be satisfied that it was finished, much less perfected.
Instead, I believe it is simply quite useful. So, I fixed the feature list in its
current state and set about tying up the loose ends of documentation,
distribution, etc. to create the package you have here. Of course, I will continue
to work to expand and improve the program, and I now have a lab full of
extremely competent student programmers and researchers who are,
themselves, working diligently and enthusiastically to develop new functions
and features that are expected to find their way into future versions of the
program. For now, though, it is what it is. I hope you find it useful. -dslice

DISCLAIMER
The program, Morpheus et al.: Java Edition, and all documentation, files,
scripts, etc. distributed with it are provided “As Is”. While I have attempted to
check the accuracy of computations, data files, documentation, etc. and the
safe performance of associated scripts, I accept no responsibility for the results
of their use or misuse. No claims are made as to the suitability (or not) of the
software and associated files for any particular purpose. By using this
software, the user assumes all responsibility for subsequent results.

x

Acknowledgements
No one person could claim sole credit for the development of a program such as
Morpheus et al. As such, I am indebted to a vast number of individuals, many
of whom remain nameless to me, as they were respondents to various online
queries or sharers of clever routines for specific purposes.

Of those whose names I do know, of particular note are F. James Rohlf and
Fred L. Bookstein. Jim Rohlf was my dissertation advisor and is still my
general mentor who has always given freely of his vast knowledge on subjects
such as, but not limited to, programming, statistics, and morphometrics. Fred
Bookstein, with whom I have occasionally competed with for resources at the
University of Vienna, is an icon in the field of morphometrics and has shown
exceptional patience with me as I have tried to delve sufficiently deeply into the
technical aspects of morphometrics and their underlying meaning.

Other individuals who cannot be overlooked are the late Leslie F. Marcus, who
willingly and tirelessly, promoted my involvement in the morphometrics
community and taught me how to enjoy international travel, and the late
Marco Corti, who did so much for the promotion of advanced morphometric
research.

I am also forever grateful for the support and encouragement given to me by
Horst Seidler at the University of Vienna, who provided me a place and the
means to teach and work on morphometric methods and software when I most
needed them.

Of course, I cannot omit the contributions of so many colleagues, researchers,
and students around the world, especially those in Vienna, whose problems
and inquiries motivated me to find out more about morphometric methods and
provide generally useful routines to address their own particular problems.
Alas, this latter group is far too extensive to recognize individually.

This new release also affords me the opportunity to recognize the contributions
of the inhabitants and local associates of the MorphLab at Florida State
University. As of this writing, these include Thomas Campbell Arnold,
Cameron Berkley, Kathryn O'D. Miyar, Benjamin Pomidor, James K. Soda,
Detelina Stoyanova, Stephan Townsend, Olmo Zavala Romero, and Aki
Watanabe. Specific, algorithmic contributions to the program are recognized
individually within this document and the program, itself. Other collaborators
who have inspired, through their own research questions, development of the
program can be found on the MorphLab website at
http://morphlab.sc.fsu.edu.

To all of these people, I am most appreciative and fully acknowledge their
contribution to this effort, while taking sole responsibility for any mistakes

http://morphlab.sc.fsu.edu/

xi

herein.

This work was supported, in part and most recently, by Cooperative Research
Agreement W911QY-12-2-0004 between Florida State University and the U.S.
Army Natick Soldier Research, Development, and Engineering Center
(http://www.army.mil/info/organization/natick/) and a contract from
InfoSciTex Corp. This support in no way implies endorsement of the final
product.

http://www.army.mil/info/organization/natick/

xii

1

 1 Introduction
Morpheus et al. is a program designed to carry out generally useful functions
related to geometric morphometrics (GM). If you have found, opened, and are
reading this document, there is little reason to delve too deeply into what
geometric morphometrics is other than, for completeness, to say that it is a
field focused on the analysis of the shapes and forms of specimens of interest.
What those shapes and forms are is generally unique to the individual
researcher or project, but the methods employed to rigorously analyze them are
shared across numerous and diverse disciplines.

 1.1 Design Goals
Early experience with morphometric software, e.g., GRF (Slice and Rohlf, 1989),
revealed a number of problems with such domain-specific programs. Primarily,
these program were, and still often are, written to perform fixed operations on
perfect data conforming to the strict requirements of the software.
Furthermore, these program were limited to a single computational platform.
Those that did operate in multiple environments were often written in portable
languages with only a rudimentary, command-line interface. GRF-ND (Slice,
1992) was an early attempt to address some of these shortcomings. It removed
the restriction of morphometric analysis to two-dimensional data and allowed
additional operational flexibility, but still was limited to a single computing
environment and a rigid, limited data structure. With support from the U.S.
National Science Foundation (BIR-9503024), it was undertaken to develop
totally new, flexible software for morphometric analysis. This resulted in the
first version of Morpheus et al. (Slice, 1996) and was somewhat successful. The
new software supported varied, user-defined data types, tolerated incomplete
data of any dimensionality, and was, initially, cross-platform, running in
Windows, Unix, AIX, OS2 Warp, and Mac OS environments. However, the
original Morpheus et al. was fatally flawed in that it depended upon
commercial cross-platform libraries. The company responsible for those
libraries never produced a promised graphical product for the MacIntosh and
eventually, as might be expected, terminated support for their library in favor
of dedicating their efforts to programming watches or some such nonsense.
This eventually led to the program being effectively limited to the 16-bit
Windows environments supporting only “8.3” DOS filenames. As such, the
program never reached its full potential, though it still offers some functionality
not readily found elsewhere.

Nevertheless, it was apparent that a new package needed to be developed. This
was begun in 2005 with no external support. The design goals of that project,
leading to the current Morpheus et al. program, were still to provide a platform-
independent, flexible, and extensible environment for morphometric analysis.

2

How each of these goals was addressed is described in the following sections.

 1.1.1 Platform independence
Platform independence, the ability of software to run in multiple computational
environments, is a fundamental attribute I expect not only in the software I
produce, but in all of the software I use on a regular basis. As I tell my student,
I will not demand that they work in a particular environment or purchase a
specific software package, and I do not expect them to impose such restrictions
or make such demands on me. There really is no need, as there are ample
high-quality, open-source, cross-platform programs available for most any
need. The few exceptions for me include the very nice Osirix program
(http://www.osirix-viewer.com/) that is written only for the Mac OS X
environment (though I suspect alternatives for other systems are available) and
certain document suites that I require to interact with colleagues who default
to the use of proprietary software. For my own software development, platform
independence is a basic requirement.

As was mentioned earlier, my initial attempts at achieving platform-
independence was thwarted by my use of a commercial software library. Not
wishing to repeat this expensive failure, I set about finding a non-commercial,
well-supported platform with which to work. This led to Java (www.java.com).

The Java programming language is an interpreted language that runs on a
virtual machine. That is, Java programs are compiled into Java-specific byte-
code that is then executed on a “virtual machine” that is written for a
particular operating environment. Reasonably carefully crafted programs are,
then, platform independent and can run on any system for which a virtual
machine is available. Currently, virtual machines are available for MS
Windows, Mac OS X, and various flavors of Linux/Unix operating systems. In
addition, Java is also supported in high-performance computing environments,
which are often based, themselves, on Linux.

One critical issue in deciding to develop the new Morpheus using the Java
language was acceptance and potential longevity. Java is a mature, widely
accepted language that regularly competes, and usually exceeds, the “C”
language for the top spot in programming popularity (e.g.,
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html).
Furthermore, Java programmers are frequently some of the most sought-after
people in the IT industry. This last observation gives me assurance that by
encouraging my students to learn and use Java, I am not only addressing my
own needs and those of the morphometrics community, but providing them
with valuable experience for their own career development.

Along with the underlying platform independence of the Java language, it also
provides a sophisticated graphical user-interface environment through its

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.java.com/
http://www.osirix-viewer.com/

3

Swing libraries, as well as several others should one chose to avail themselves
of them. Furthermore, the Java community also supports sophisticated
libraries for access to accelerated, three-dimensional graphics provided by the
OpenGL language. Platform- and hardware-specific libraries for accessing these
features are available for most platforms, and access to them from within Java
is possible through the Jogl interface (https://jogamp.org/jogl/www/)
supported by an active and talented group of developers.

Still, though the Java language provides a sophisticated graphical environment
and access to high-performance, hardware-specific graphics engines, the
underlying design of the latest version of Morpheus et al. keeps these features
segregated from the computational components of the program necessary for
morphometric analysis. In this way, a version of the program could be
developed (such is planned for the near future 1) that would be completely
independent of any graphical environment or hardware.

 1.1.2 Flexibility
A common problem with task-specific software is its limitation to specific
analyses determined by the programmer of particular types of data adhering to
inflexible formatting requirements. Such an environment often restricts the
user's scope of analysis and, in general, research creativity. One fundamental
principal that informed both the computational model of Morpheus et al. and
its data-file format was to eliminate, to the extent possible, this type of
constraint.

This makes for a significant programming challenge, as routines must be
developed to process data about which little may be known in advance. In
morphometric research, this generally includes sample size, of course, but also
data dimensionality. Researchers may also want to include with their data non-
morphometric information that is not part of the fundamental morphometric
operations they seek to perform within a program and may want to quantify
aspects of their data that are not strictly part of the GM paradigm.

To address these issues, Morpheus et al. takes advantage of the object-oriented
programming model by using dynamic, “self-aware” data structures. For
instance, points2 are stored in linked lists of point-class objects (in the
1 Speculation about future features of the program has been intentionally limited in this

documentation. One can always say one is intending to do all sorts of useful and amazing
things, but until they are actually available, they are of no use to the end user and their
anticipation can result in lost time and research opportunities. In the case of a purely
command-line version of Morpheus, this is a fairly trivial proposition and is high on the
TODO list for development. I expect it to be available in the next release. ← I was wrong.
Maybe next time.

2 Because of the generalized nature of the design of the software, we refer to “points” and
“curves” instead of “landmarks” and “outlines”. Your points and curves may, in fact, be
proper landmarks and outlines, but that is not required by the program.

https://jogamp.org/jogl/www/

4

programming sense), each of which maintains its own labeling and
dimensionality information along with the coordinates of the points. Similarly,
the specimens or objects in a data set are object-class objects that keep track
of the types of data available, their location, and other ancillary information.
These, in turn, are maintained by object-list-class objects that maintain and
provide access to object-level operations. All computations within the program
query the list, object, or specific data element for the information necessary to
carry out the required operation. With this architecture, relatively few
restrictions are placed on the data to be processed by the program.

The file format, itself, helps further this goal. Described in more detail in the
“Morpheus data files (.mdt)” chapter of this document, the format of Morpheus
data files provides support for a number of data types not necessarily specific
to morphometric analysis and the flexible specification of those that are. For
instance, the dimensionality of points and curves is specified within the data
file, and user-defined variables in string, character, integer, and decimal format
are supported. There are no prerequisites as to the number or, even, order of
such elements in a data file. Nor is it required that all objects in a data file have
the same number of components of a particular type. Specific computations,
however, may require a common number and order of a particular type of data,
but this is checked only when the computation is to be performed. In this way,
researchers can include with their morphometric data almost any other
information they would like to keep associated with their specimens. This
information, while possibly not used at all by the program, remains intact and
can be utilized in other analyses within other analytical environments.

The goal of flexibility extends to the organization of the computational
components, as well. Operations, such as the computation of the grand mean,
are carried out independently of any other operations. One does not have to, for
instance, perform a generalized Procrustes analysis (GPA) to compute the
grand mean of the current point data, though computation of the mean is part
of the GPA operation. This means that one can load point-coordinate data
whether or not it is appropriate for superimposition and compute and save the
mean. For instance, one might have coordinates that represent standard types
of measurements, e.g., lengths, widths, heights, and use Morpheus to compute
the mean values for these variables.

 1.1.3 Extensibility
The desire for extensibility is incorporated into all aspects of the program from
its overall organization, to its computational components, to its file structure.
To the extent possible, and this is a fairly great extent due to the object-
oriented nature of the program, software components operate independently of
one another. One component may be aware of another, but it need not know
anything of the details of its organization. Instead, the second component

5

provides an interface that allows the first to query it as to any required
information. The superimposition routines, for instance, ask the object list how
many objects are available and their dimensionality, it then proceeds with the
superimposition process by checking the objects in the list for consistency in
the number and organization of their primary points3 and carrying out the
superimposition based on this information.

By sequestering data-specific information to within a data class to the extent
possible and providing the means to query the data structure, new routines
can be easily developed that require only knowledge of how to ask the data
structures about their contents. The program then needs only to be told about
the existence of such a routine via the command-line processor and, usually,
the addition of menu items for that routine.

The file format is similarly designed for extensibility. Basic organization is not
rigidly structured with a few, generally optional, directives being required at the
beginning of the file followed by fairly unstructured sets of points, variables,
curves, etc. packaged into data objects. Such a design allows for the easy
addition of new, useful data types as they are identified.

 1.2 Operational Model
It is worth a few words on the operational model of Morpheus to give the user
an idea of what is going on “behind the scenes” when the program is run.
Basically, when a data file is read in, an initially empty list is created to hold
the data. This list maintains and provides access to certain global information
about the data, such as the source filename, the dimensionality of the data,
user-defined measurements to be made across all objects, and graphical links
to facilitate visualization of an individual object. Next, data for individual
objects are read in. These objects are added to the list, which maintains them
as a linked list. The objects, themselves, are initially empty except for label
information. As data for an object is read from a file, they are added to the list
according to their type, e.g., points, curves, images, etc. The object maintains
its own, separate lists of these data.

When part of the program is ready to carry out computations on the data, it
usually does so through the main object list. From this list, it can determine
the number of objects contained therein, their dimensionality, and globally
defined measurements. If the routine needs to operate on individual objects, it

3 Points (and some other data types) are classified as either “primary” or “secondary” allowing
the subsetting of data within a data type for a particular analysis. For example, a
point/landmark-based superimposition will estimate the transformation parameters using
only the primary points, but apply that transformation to all coordinate-based data, such as
secondary points. Point state is specified in the data file and can be set by the user through
the “demote” and “promote” commands within the program. See the “Commands” chapter
for details.

6

asks the list for pointers to specific objects. These can be used to query the
object, itself, about the numbers and types of data it contains, and, when
needed, the object can be asked to provide specific data.

Overall, the organization looks something like this for point/landmark data:

Object List (label, file, dimensionality, measurements, links, number of objects)

– Object i (label, dimensionality, point lists, curve lists, etc.)

– Point List (dimensionality, number of points, etc.)

– Point (label, dimensionality, coordinate array)

Under this organization, existing routines can function without the need for
hard-coded knowledge of the available data, and new data types and structures
can be added without interfering with existing structures or the routines that
use them.

7

 1.3 First Look
Figure 1.1 shows the Morpheus et al. startup window. It is automatically
positioned and scaled for your desktop resolution. You can move or change the
desktop as you would any other window. The figure also shows key features of
the program desktop.

1. The main menu.

2. The listing window used for text output.

3. The command line used to enter commands.

4. The tabbed pane used to contain graphical displays.

5. The split pane used to adjust the relative proportion of the program
window allotted to text and graphical output.

Almost all operations in Morpheus (save only those that are really specific to

Figure 1.1: Morpheus et al. default startup window on the Mac OS X operating
system: 1) main menu, 2) text output area 3) command line, 4) graphics area, 5)
split-pane adjuster. Note, the “Analyze” menu choice is not shown in the above
graphic.

1

2

5

4

3

8

the graphical interface) are controlled by commands. These commands can be
entered by the user at the command line (no. 3 above) or read from a batch file
for parsing and processing. The menu system (no. 1 above), again except for
things like the desktop size that are specific to the graphical interface, serves
simply to gather data to generate command lines that are then submitted for
processing. The commands are printed in the listing window (no. 2 above) prior
to processing so that you can use the commands to get the proper syntax to
use in batch files.

The default graphics window is displayed in a sub-window on the right (4 in
Figure 1.1). With no data loaded, floating interaction hints are display. As you
might surmise, pressing and holding the first (left) mouse button allows the
user to grab and rotate the scene, the second (middle) mouse button zooms the
image, and the third (right) mouse button moves the scene up and down or left
and right. The divider between the listing and graphics windows can be
adjusted to show more or less of one or the other, and the current division is
saved when the program is terminated with the “File|Exit” command. This
proportion is restored the next time the program is run. Additional graphical
output is added to this area, and specific plots can be selected via tabs that
appear at the top of the pane.

 1.4 What's new?
Those familiar with earlier version of the Java edition of Morpheus et al will
recognize that the program has undergone extensive organizational changes.
The most apparent of these is that the graphics window, which was previous a
separate, free-floating window, has been incorporated into the main program
window. The main program window is now divided into two panes. The leftmost
is used for the command line and text output, and the right is used for
graphical output. These are, in fact, two components of a “split pane” and the
amount of area allocated to each sub-pane can be adjusted by the bar in
between. This can be manually adjusted or arrows on the bar can be used to
have the text area or the graphical area fill the program window (aside from the
menu area, of course). When the user exits the program via the “File|Exit”
command, the proportion allocated to text and graphics is saved and restored
when the program is restarted. Furthermore, the graphical area is actually a
tabbed pane, and additional graphical output can be added to it. Specific
graphical displays are then selected by the tabs at the top of this area.

The menus, too, have been extensively reorganized. The main menu now
contains selections for “File”, “View”, “Edit”, “Process”, “Analyze”, “Save”,
“System”, and “Help” selections. The first of these represent a normal flow of
program interaction. The user opens a data file (“File”), views various properties
of the loaded data (“View”), may edit the data by adding or modifying points
(“Edit”), may further process the data by Procrustes superimposition or other

9

computational methods (“Process”), analyze the current data (“Analyze”), and
save various results (“Save”). The “System” and “Help” items provide additional
program-wide information or functions. The choices, many of which are new,
available under these main headings are discussed in detail later in this
document.

Another major addition to this version is the use of an “iSeq” parameter for
specifying sequences of item indices. Previous versions of the program required
the user to specify items to be operated upon one at a time. That is, commands
to be applied to multiple items had to be entered for each item. With the iSeq,
sets of items can be specified. What items are indexed is specific to the
operation being performed. The general syntax of an iSeq is a series of index
specifications separated by commas. No spaces are allowed, and ranges are
supported by use of the '-' character. If a range begins with a '-', then indexing
from the first item in the list is assumed. If it ends with a '-', then indexing is
assumed to extend to the last item. Unique (redundancies are eliminated) items
are sorted as appropriate for the command being used.

For instance, assuming a set of seventy-three items., a relevant iSeq might look
like:

-3,8,12,16-19,8,17,71-

Such an iSeq would be parsed as:
1,2,3,8,12,16,17,18,19,8,17,71,72,73

Then sorted:
1,2,3,8,8,12,16,17,17,18,19,71,72,73

And cleaned up to produce:
1,2,3,8,12,16,17,18,19,71,72,73

For some multiple operations, item indexing might lead to certain ambiguities.
For instance, if one wanted to delete items 4 and 7 from a list, if one deletes
item 4 first, does one then delete the current item 7 (all indices have been
reduced by one) or the item 7 in the original list. To address this, it is assumed
that all indices in a particular iSeq refer to the original position. So, for some
operations, e.g., insertions and deletions, the operations are performed using
the iSeq indices in descending index order. When such ambiguities are not
present, operations are performed from lowest to highest index.

 1.5 References
Slice, D. E. 1992. GRF-ND: N-dimensional Rotational Fitting and Analysis. Stony
Brook, NY, USA: Department of Ecology and Evolution, SUNY, Stony Brook.

10

Slice, D. E. 1996. Morpheus et al.: Cross-platform Software for Morphometric
Research. Stony Brook, NY, USA: Department of Ecology and Evolution, SUNY,
Stony Brook.

Slice, D. E., and F. J. Rohlf. 1989. GRF: Generalized Rotational Fitting Program.
Stony Brook, NY, USA: Department of Ecology and Evolution, SUNY, Stony
Brook.

11

 2 Installation and Execution

 2.1 Installation
Morpheus et al. is distributed as a single .zip file for all platforms. The format
of the filename of the distribution file is “morpheus_et_al_yyyymmdd.zip”,
where “yyyymmdd” are numeric values for the year, month, and date the
distribution was prepared. Installation simply involves downloading the
distribution file and unzipping it. This will create a directory or folder with the
same name as the zip file (minus the “.zip” extension). A command-line listing
of the directory contents will look something like:

-rw-rw-rw- 1 dslice wheel 2811 Feb 24 11:56 00README.TXT
drwxrwxrwx 7 dslice staff 238 Feb 24 13:19 data
drwxrwxrwx 10 dslice staff 340 Feb 24 13:19 icons
drwxrwxrwx 31 dslice staff 1054 Feb 24 15:07 lib
drwxrwxrwx@ 3 dslice staff 102 Feb 24 13:19 mac_os_x_prepare.app
drwxrwxrwx@ 3 dslice staff 102 Feb 24 13:19 mac_os_x_undo_prepare.app
drwxrwxrwx@ 3 dslice staff 102 Feb 24 13:19 morpheus.app
-rw-rw-rw- 1 dslice wheel 547 Feb 24 11:56 morpheus.bat
-rwxrwxrwx@ 1 dslice wheel 892 Feb 24 11:56 morpheus.sh
-rw-rw-rw- 1 dslice wheel 3196628 Feb 24 12:37 morpheus_et_al.jar
-rw-rw-rw-@ 1 dslice wheel 3159874 Feb 24 11:56 users_guide.pdf

These items and their explanations are:

“00README.TXT” - a file containing explanations of how to use the available
scripts to prepare the system, run the program, and, perhaps, additional
information.

“data” - a directory for sample data sets distributed with the program.

“icons” - some graphics images the user may use for links or aliases to the
program.

“lib” - the library files used by the program.

NOTE: the “.app” files look like, and in fact are, directories, but they are the
format used by the Apple scripting language and can be thought of as batch
files or shell scripts directly executable from Apple's Finder.

“mac_os_x_prepare.app” - a script to hide some outdated Java 1.6 files that are
distributed as part of the OS X operating system. Newer, required versions of
these files (related to Java3D) are included in the .lib directory of this
distribution. If the old files are not hidden, they will cause problems for the

12

program. These files are in the /System/Library/Java/Extensions directory.
The script moves them to a subdirectory there called “hold_j3d”. Because this
is a system directory, the user will be asked several times for an administrative
password to carry out the necessary operations. These files may still be present
even if you have installed a more recent Java 1.7 version. So, one still might
have to run this script or figure out how to delete 1.6 from your system. We
leave that as an exercise and test of your internet search skills.

“mac_os_x_undo_prepare.app” - a script to undo the actions of the above
script. This is not likely to be necessary for most users, but is provided for
completeness.

N.B. Execution of the “prepare” script is not necessary if you (or the OS) has
not installed Apple's Java 1.6 on your system.

“morpheus.app” - a script to execute the program under OS X. While the
program may be executed directly by double-clicking the morpheus_et_al.jar
file, this does not allocate additional memory the program may need, and the
program may not be executed from the correct subdirectory. This script does
both. What it actually does is invoke the shell script “morpheus.sh” that is
provided for linux systems and can be used under OS X from the command
line. This script may be edited with an ASCII text editor to change the amount
of memory allocated to the program.

“morpheus.bat” - a batch file to execute the program under MS Windows. While
the program may be executed directly by double-clicking the
morpheus_et_al.jar file, this does not allocated additional memory the program
may need, and the program may not be executed from the correct subdirectory.
This batch file does both, and may be edited with an ASCII text editor to
change the amount of memory allocated to the program.

“morpheus.sh” - a shell script to execute the program under unix-like operating
systems. While the program may be executed directly by double-clicking the
morpheus_et_al.jar file, this does not allocated additional memory the program
may need, and the program may not be executed from the correct subdirectory.
This script does both. It can be used under the linux operating system or from
the command line in OS X, and it may be edited with an ASCII text editor to
change the amount of memory allocated to the program.

“morpheus_et_al.jar” - the actual Morpheus et al. program. While the program
may be executed directly by double-clicking this file, this does not allocated
additional memory the program may need and may not execute from the
correct subdirectory. One should use one of the provided platform-specific

13

execution scripts.

“users_guide.pdf” - the Morpheus et al. user's guide (this file).

 2.1.1 Example Data Files
A number of example data files are provided with the program in the “data”
subdirectory. The contents of this subdirectory are:

-rw-rw-rw- 1 dslice wheel 1056 Feb 24 11:56 00README.TXT
drwxrwxrwx 12 dslice staff 408 Feb 24 13:19 2d
drwxrwxrwx 7 dslice staff 238 Feb 24 13:19 3d
drwxrwxrwx 7 dslice staff 238 Feb 24 13:19 batch
drwxrwxrwx 3 dslice staff 102 Feb 24 13:19 nd

“00README.TXT” - a text file describing the subdirectory contents.

“2d” - various data sets of two-dimensional data.

“3d” - data sets of three-dimensional data.

“batch” - files and data illustrating the use of Morpheus's batch-file processing
system.

“nd” - sample data files of n-dimensional data.

 2.1.2 Icons
The “icons” directory provides a number of graphics files (e.g., the morpheus
macaque) in various formats the user may wish to associate with the program
or its executing scripts. The .xcf extension is a Gimp-format file
(http://www.gimp.org/) that can be modified in that program. The “.png” files
are in portable network graphics format, and the other files are OS X Finder
icons. The free, online icon convertor at http://iconverticons.com/ is a useful
resource for creating your own icons. For OS X, for instance, upload the
graphics file to the website, convert the file, and save the “.hqx” version.
Double-clicking on the downloaded file will unpack the icon that can be directly
dropped onto a file's “Get info” dialog icon.

 2.2 Execution
Morpheus et al. may be run from most operating systems by double-clicking
the morpheus_et_al.jar file. However, this may not provide sufficient memory to
the program for larger data sets, and the program may not be executed from
the appropriate subdirectory. Hence, a number of platform-specific scripts are

http://iconverticons.com/
http://www.gimp.org/

14

provided for this purpose. These are “morpheus” (as it appears in Finder) for
OS X, “morpheus.bat” for MS Windows, and “morpheus.sh” for unix-like
operating systems (Linux and the Mac OS X command-line). It is preferable to
run the program by executing these scripts.

Furthermore, DO NOT move these scripts from the directory. They need to be
in their original locations in the main distribution directory to find the
necessary files and libraries. For more convenient remote execution, create an
alias or link to the appropriate execution script and move that link to the
desired location, e.g., the operating system desktop.

The Morpheus et al. distribution directory, on the other hand, can be moved to
any convenient location.

 2.3 Trouble Shooting
Simply unzipping the distribution file and clicking on the program launcher for
your platform (see below) should run the program. However, it is practically
impossible for us to check the program under all possible combinations
operating system and hardware/software revisions. If it does not run after
unzipping and clicking, one might need to seek help from someone proficient in
your operating system and/or Java installation and configuration. The program
has been developed at various times under Linux, Windows, and, for the most
part, Mac OS X, and it is known to run without incident under all such
operating systems. Some environments have reported problems, however. For
instance, at a recent workshop, all participants running a version of Windows
(no one seems to have had the same version) were able to run the program
straight out of the archive. A few Mac users had problems.

There are a couple of known complexities in the Mac OS X environment. The
first of these relates to Apple's original development and maintenance of its
own Java 1.6 engine. Apple did not do a very good job of updating the engine,
and, unfortunately, included (and still includes) additional libraries that
conflict with more modern ones used by Morpheus. That is the purpose of the
mac_os_x_prepare.app and mac_os_x_undo_prepare.app described below.
Basically, these just move out-of-date files out the way so Morpheus doesn't try
to use them, or put them back if you wish.

Java, however, is into version 1.7 (early versions of 1.8 are available as of this
writing), so that is the best choice if you don't have Apple's 1.6 installed. Even
if you have installed 1.7 (or later), the 1.6 files will still interfere with program
operation if they are lying about.

A second subtlety with Java 1.7 on the Mac is that it is geared more toward
running online apps than standalone ones like Morpheus et al. As a result,
installing the 1.7 JRE (Java Runtime Environment) doesn't set up the system

15

for running standalone apps on Mac OS X (since all of our platforms are set up
for development, we do not know if this is the case for other OSs.). One should
instead install the JDE (Java Development Environment -
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-
1880260.html). That should work.

Still some Mac users mentioned above were still unable to get the program
running properly. In one case, the system was running OS 10.9 and would run
the program from the command line, but the .app scripts would not execute. In
two others, nothing would work – scripts or app. Both of these systems were
running OS 10.7 and, initially, Java 1.6. Upgrading to Java 1.7 JDK did not
help.

If you have a problem, please let us know and, best of all, try to seek local
expertise in resolving the issue. As problems are identified and solved, these
solutions will be announced and included in this documentation.

http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

16

17

 3 The Listing Pane
The listing pane is the program's primary means of communication with the
user and the basic mode by which users can provide instructions to the
program. The results of various commands are displayed in this pane, and the
user can enter commands to be executed by the program. Figure 1 shows this
pane with some representative output. Commands are entered by the user in
the command-line area marked “1” in the figure, while output is displayed in
the text area marked “2”.

Figure 1: The program listing pane showing: 1) the command line where
commands may be manually entered and 2) the output area.

The text buffer is large, but finite. The current buffer is limited to 10000 lines
of output. When that limit is reached, the first 5000 lines are purged. For large,
complex operations as might arise when using batch files, all output can be
saved by using the output logging capabilities of the program (see “File|Log” in
the “Commands” chapter for details). With output logging turned on, all output
is saved to a user-specified file.

1

2

18

Commands and output can be copied from the listing pane, and copied
commands can be pasted into the command line for editing and/or re-
execution. In most cases, the menu system is used to generate appropriately
formatted commands, but with some familiarity with the program, the user
may tend to enter simpler commands directly through the command line. This
may require clicking the command area with the mouse to give it “focus” for
accepting input.

19

 4 The Graphics Pane
The graphics pane (Figure 4.1) is used to display graphical representations of
various kinds of data. These may include images of specimens, points, curves,
graphical links and polygons, user-defined measurements, surfaces, and other
types of object-related data. The pane may also be used to display more
abstract plots such as the results of a principal components analysis as
described in the chapter, “More Complex Examples”. The plots, themselves,
may be either two- or three-dimensional renderings, and the user can change
between to two types of plots for any data. The user may also select which data
dimensions are associated with which axes. The latter is most useful when
dealing with higher-dimensional data. Various plotting options are accessible
via data-specific toolbars at the bottom of the pane.

Figure 4.2 shows a typical plot of a single specimen from the sample data file,
“scapulae.mdt”, in the “2D” data subdirectory. The image associated with the
first object is displayed in the background and point positions and user-defined

Figure 4.1: Typical graphics pane showing, in this case, data for a 3D object (a
monkey skull) with texture-mapped surface and landmark points.

20

links (to better visualize the specimen) are drawn on top of the image. The title
is, by default, the name of the data file, and the footer at the bottom is the label
for the object. The legend to the right indicates the data have been grouped and
the groups named, with the “gorilla” group being represented by green, round
symbols for points and the “pan” group being represented by blue, square
symbols for their points.When data are intially grouped, unique color-symbol
combinations are generated (up to a point) for each group. These may be
changed using the options dialog as described later in this section.

At the bottom of the figure are shown the toolbars that control the display of
object data. The leftmost set of controls determine which object or objects are
displayed. The combox at the far left can be used to select a particular object
for display. The “All” toggle changes to plot to display data for all objects
currently loaded into the program. The “<” and “>” buttons to the right of that
allow the user to step forward and backward through the objects. When the
“All” button is clicked, the display of individual images is suppressed for two-

Figure 4.2: Typical graphics pane showing, in this case, data for a 2D object (a
gorilla scapula) with image, points, and graphical links.

21

dimensional data. Otherwise, the images would obscure each other. For three-
dimensional data with surfaces, all surfaces are displayed. This different
behavior is illustrated in Figures 4.3 and 4.4.

Figure 4.3: A typical graphics pane displaying data for "All" 2D objects. In this
case, three gorilla (green) and three chimpanzee (blue). Points and links are
shown while associated images are suppressed.

22

The “Reference” button presents a dialog (Figure 4.5) that allows the user to
specify a specimen to include in all plots for reference purposes. The drop-
down menu at the top allows the specification of the grand mean or one of the
data objects to be used as the reference. At this time, only the points (not
surfaces or curves) of the grand mean are displayed. Other buttons invoke
dialogs that allow the specification of how elements of the reference object are
to be rendered. These are the same dialogs used for object rendering and are
explained in detail below. The “Link to objects” toggle enables the drawing of
lines from the reference points to their homologs on individual data objects.
This allows for an assessment of consistent point ordering, especially when
point clouds overlap – lines will extend from the reference into another point
cloud if points are out of order.

Figure 4.4: A typical graphics pane displaying data (monkey_skulls.mdt) for "All"
3D objects. In this case, scans of various monkey skulls. Points (and other
elements) are shown and intersecting surfaces are rendered.

23

Figures 4.6 and 4.7 show several representations of the reference object in
plots of the file, monkey_skulls.mdt. In Figure 4.6, the first specimen (Cebus
sp., shown in pink) is used as the reference for the plotting of the second
specimen (Chiropotes sp.). In Figure 4.7, the Grand Mean is used as the
reference (again in pink) for a plot of all the other specimens in the data set
(which have been aligned by GPA). In this case, only the mean point locations
are shown – there is no capacity at this time to compute mean curves,
surfaces, images, etc. The latter plot also clearly shows the “Link to objects”
lines.

Figure 4.5: Reference dialog allowing user to specify which, if any, specimen (or
the Grand Mean) is to be included in all plots for reference and providing
control for its rendering. The “Link to objects” button indicates points in the
reference are to be linked by lines to points in the displayed object.

24

The set of controls to the right of the top toolbar control the variables assigned
to each axis and the dimensionality of the plot. Users are allowed to select
which variable is associated with each of the two or three axes. For most data
for physical objects, this will be unnecessary, but it allows the user to specify
low dimensional subsets of variables from higher-dimensional data sets for
plotting.

Figure 4.6: The first specimen (in transparent pink) used as reference in a plot of
second specimen. Data aligned by GPA.

25

The button at the far right of the top toolbar toggles between two-dimensional
and three-dimensional plots of any data set. When three-dimensional plotting
is selected for two-dimensional data, the third variable is set to “null” and the
original data simply has a zero z-coordinate appended to it (with a bit of a
negative nudge for images to ensure other plot elements are visible) as shown
in Figure 4.8.

Figure 4.7: A plot of all 3D specimens in the monkey_skulls.mdt file after GPA
and scale restoration plotted with the grand mean (larger pink symbols) as
reference. Links connect each specimen's primary point to the mean point
locations.

26

The lower toolbar controls the elements displayed in the plot and the general
plot options. The toggles on the left turn the plotting of points (“P”), curves
(“C”), and images (“I”) ON or OFF. For plotting purposes, surfaces are
considered to be three dimensional images. The next set of toggles controls the
display of ancillary (non-data) plot components. These include graphical links
(“L”) and polygons (“Ply”) to better visualize the objects, user-defined
measurements (“M” - not currently enabled), and a data bounding box (“B”).
The rightmost set of controls allows the user to access various options related
to viewing and rendering. The “Reset” button returns the plot view (for three-
dimensional plots) to its default values. The “Opts...” button brings up a dialog
allowing the setting of numerous plot options. These are discussed in more
detail below.

Figure 4.8: A graphics pane displaying 2D data in a 3D plot. The data are
rendered on a rotatable, scalable, translatable plane embedded in the 3D
rendering space.

27

 4.1 Plot Options
The “Plot Option” dialog is presented whenever the “Opts..” button is clicked. It
presents a dialog of tabbed panes that allow for the setting of global and group-
specific plotting options.

 4.1.1 General Plotting Options
Figure 4.9 shows the initial appearance of the “Plot Options” dialog. The default
tabbed pane is for the setting of various global plotting options. These include
the choice of projection mode to be used in three-dimensional renderings and
the background color for the plot. The projection model can be either
“Perspective” or “Orthogonal”. With a perspective projection mode, points

Figure 4.9: The “Plot Options” dialog pane for general plot options including
projection mode, a button to select background color, and a toggle for the data-
wide scaling of the plots of individual objects. Changes made to projection mode
or background color take effect immediately.

28

equidistance apart appear closer together when farther away than when they
are closer to the viewer. This simulates actual human vision, where parallel
lines (e.g., the rails of a train track) appear to converge in the distance. With an
orthogonal projection model, relative distances between points are preserved
regardless of their distance from the viewer. The latter is probably a more
reasonable projection for scientific usage, but this (in the current graphics
system) precludes the ability to zoom in on parts of the plot. Therefore, the
program uses the perspective projection by default.

Clicking the “Background Color...” button brings up a color dialog that provides
the user with a variety of ways to select the background color for the plot.

The “Data-wide plot scaling” toggle, if selected, specifies that plots of individual
objects are to be based on the range of values found across the entire data set.
That is scaling (and offset) factors are computed to allow the display of the
entire data set within the plot, even though a single object is being plotted.
That is, the individual object is plotted just as it would be if all the data were
being plotted. This helps to identify individual objects oddly positioned in larger
data sets. If this toggle is not selected, each object is scaled and positioned to
maximize its size in the plotting space.

Changes to either the projection model or background color have immediate
effect. Change to the “Data-wide plot scaling” toggle requires either clicking the
“Apply” or “Done” button, at which point the data will be replotted.

 4.1.2 Group Plotting Options
The second tabbed pane, “Groups”, provides the user access to options for the
plotting of object elements according to group membership (Figure 4.10). If the
objects are ungrouped, the only choice available in the group-selection drop-
down list is “ALL”. Otherwise, the drop-down list allows the user to select to
which group changes will be applied.

29

The buttons below the group drop-down list present dialogs specific to the
elements in their label. Changes to these elements do not take affect
immediately in order to limit unnecessary rendering. The “Cancel” buttong
abandons changes and closes the dialog. The “Apply” button re-renders the
plot incorporating any pending changes. The “Done” button closes the dialog
and re-renders the plot if changes have been made.

Figure 4.11 shows the dialog for setting how primary points will be rendered.
The user may select the type of symbol to use from the drop-down list. The
“Scale” editor allows the user to specify the scale of the symbols relative to their
default size, which was chosen for purely aesthetic reasons. To provide visual
balance across choices of symbol, three-dimensional symbols are scaled to all
have the same volume, while two-dimensional symbols are scaled to the same
area. The “Color...” button brings up the color-selection dialog to allow the user
to select the color in which the primary points are to be rendered. A similar

Figure 4.10: Groups option pane for graphics display. The user may select the
group, then specific elements of the plot, to modify.

30

dialog is available for secondary points.

Figure 4.12 shows the dialog to set the appearance of curves. Curves are
rendered as two-dimensional lines even in three-dimensional plots to speed
rendering and produces “cleaner” plots. The dialog provides the users with
controls to set the width of the lines used for curves and a button to access the
color dialog to set their color.

Figure 4.11: Point-symbol dialog. The user may select the symbol used to plot a
point for the associated group and the size and color of that symbol.

31

The surface dialog, shown in Figure 4.13, allows the user to specify various
rendering attributes for any surfaces associated with a three-dimensional
object. These include the selection of a rendering mode where the surfaces can
be rendered either as filled triangles using the associated color, as edge-
connected vertices, or simply as unconnected vertices. The dialog also provides
controls for setting the transparency, smoothness, and shininess of the
surface. The defaults are for surfaces to be rendered using opaque faces of
moderate shininess. No smoothing is done by default as it seems more
appropriate for scientific work to be aware of the coarseness of the underlying
data. The “Force group coloring” toggle at the bottom forces the rendering of
surfaces according to the group color specifications even if the original surface
color information is available.

Figure 4.12: The curve-option dialog that allows the user to specify the color and
width to be used for plotting curves that are rendered as 2D lines in both 2D and
3D plots.

32

The dialog for specifying the appearance of simple lines used in the plot is
shown in Figure 4.14. These lines are used, for instance, in drawing the
connections between reference points and those of objects rendered in the plot.
The user may select the width and color for each object-group separately.

Figure 4.13: The dialog allowing the user to set the plotting parameters for
surfaces associated with 3D data. The surfaces may be rendered using filled
triangular faces, edge-connected vertices, or simple, vertex points. The user may
also specify the transparency, smoothness, shininess, and color to be used for
surface rendering.

33

Figure 4.15 shows the dialog for setting the attributes of graphical links. Links
are lines drawn between points to help visualize their order, arrangement, and
the structure of the object. These are declared globally in the data file and
applied to all objects for which neither endpoint is missing. These are rendered
as tubes in three-dimensional plots and as lines in two-dimensional ones. The
user can set the relative scale (diameter) of the links and their color.

Figure 4.14: The line dialog allowing the user to specify the color and relative
size of the plotting elements used for additional lines used in the plot. These
are rendered as simple lines in both 2D and 3D plots.

34

Polygons are triangular faces that, like links, are intended to help visualize the
objects with which the data are associated. They are specified globally, like
links, in the data file and are associated with three data points. A polygon is
drawn as a planar triangle between the three points. The polygon dialog allows
the user to set the transparency and shininess of these triangles, as well as
their base color as shown in Figure 4.16.

Figure 4.15: The link dialog allowing the user to specify the color and relative
size of the plotting elements used for graphical links. These are rendered as lines
in 2D and tubes in 3D.

35

Finally, controls are available to set the plotting options for secondary points
and curves. These are similar to those for their primary counterparts.

Figure 4.16: The dialog allowing the user to set the properties of graphical
polygons. The user can specify the transparency, shininess, and color.

36

37

 5 An Example
NOTE: The figures in this chapter may not reflect the extensive reorganization
of the program interface in the latest version. Translation of these examples to
the new interface, though, should be straightforward.

To get started with Morpheus et al., let's walk through a simple example. We
will read in an example 2D data set distributed with the program. This file
consists of data for six ape scapulae – three male lowland gorillas (Gorilla
gorilla gorilla) and three male common chimpanzees (Pan troglodytes). The data
are the coordinates of ten landmarks digitized from digital images. The images
are included with and referenced from the morpheus data file, scapulae.mdt.

We will then look at the data, carry out a generalized Procrustes analysis (GPA),
and save the superimposed coordinates to a file in R format for subsequent
analysis, say a multivariate t-test. All of the requisite steps should be intuitive.

First, we select the “File|Open” menu choice and are presented with a file-
selection dialog. Navigate to the morpheus folder and into the data/2d
directory. Select “scapulae.mdt” and click “Open” (see Figure 5.1).

38

Notice the .JPG files in this directory. Those are the images of the scapulae
from which the points to be superimposed were digitized.

After clicking “Open”, the program will load the data and check for the
availability of images. Figure 5.2 shows the result and some of the output of
the loading process in the listing window. There is some basic information off
the top of the screen, and you can see the summary of the loading process.
This lists the number of objects, points, etc. that were loaded. There is a
separator and the output of another command (embedded in the file) that
groups the data according to species. Finally, there is the output from a final
file-embedded command that labels the groups. Details of all of this will be
discussed later. At this point, we now have all of the data for the six scapulae
loaded and associated with the names of the image files. If the image files were
not found, you would have seen an error dialog and given the option to proceed
while ignoring image errors. The images are only used for display at this point,
and computations can proceed without them.

Figure 5.1: The “File|Open” dialog.

39

When the program was started in the original version, another window
appeared behind the main program desktop. This window has now been
included in the main program window as a tabbed frame. For our example
(generated with the original version), the display in that window is shown in
Figure 5.3, which, initially, shows the image for the first scapula with
landmark points overlain and connected by links to aid visualization. You can
use the right and left arrow keys shown next to the “All” button to move
through the data objects and view them individually. Note that when paging
through the objects, they obviously vary in size and slightly in orientation. The
two groups specified above, the gorillas and chimps, are distinguished by the
colors and symbols as indicated in the legend, and the data are a mix of right
and left scapulae – GPA has the option of reflecting (or not) to make them all
appear from the same side.

Figure 5.2: Output to listing window showing information about data loading.

40

Clicking the “All” button in this window will display all of the available data in
the display window. However, since one cannot see multiple, 2D images at the
same time, these are suppressed when viewing all data simultaneously. This is
shown in Figure 5.4.

Figure 5.3: Graphics display of the first specimen, a gorilla scapula.

41

With the data loaded and visually checked for accuracy, we move on to
executing a GPA to superimpose the scapulae to minimize the sum of squared
differences between their coordinates and the corresponding coordinates of an
iteratively computed mean scapulae. This is done by selecting the “Points|
Superimposition|GPA” choice in the original version as shown in Figure 5.5. In
the current version, the command would be executed as “Process|Points|
Superimposition|GPA”.

Figure 5.4: Graphics display of all currently loaded data. In this case, three
gorilla and three chimpanzee scapulae. Images are suppressed.

42

Selecting this choice causes the GPA to be carried out on the currently loaded
data set. As this is done, select information is output to the listing window.
Note that as part of the output, the command to carry out a GPA is listed first.
This can be used to remind the user of the correct syntax for a particular
command that can then be retyped or copied into a batch file (see the “Batch
Processing” chapter for details). After the command, program output should be
familiar to anyone undertaking a GPA.

Figure 5.5: Menu choice to carry out generalized Procrustes analysis.

43

When the superimposition is complete, the plot is update with the newly
transformed data. As before, one can view individual objects (Figure 5.7) or all
objects (sans images, Figure 5.8) in the graphics window. Contrast these plots
to those of the raw data. There is now much less disparity in the sizes,
locations, and orientations of the objects, and all objects now appear to
represent left scapulae (they were all reflected, as needed, to match the first
object that was used as the reference for the superimposition).

Figure 5.6: Output from generalized Procrustes analysis.

44

Figure 5.7: First specimen, a gorilla, after generalized Procrustes analysis.

45

The next, and final, step of this example is to export the coordinates of the
superimposed point configurations to an R-formatted data file for subsequent
statistical analysis. This is done using the “File|Export|R...” menu choice.
Figure 5.9 shows this, and the resulting file can be imported directly into R
using the “read.table(filename)” R command, subject to the usual R constraints
(filename in quotes, correct working directory, etc.).

Figure 5.8: All six specimens after generalized Procrustes analysis. Images
suppressed.

46

The contents of the file (trimmed a bit to save space) look like:

Sample data from:
Taylor, A. B. and D. E. Slice
2005
A Geometric Morphometric Assessment of the Relationship
between Scapular Variation and Locomotion in African Apes
Pages 299-318 IN
Slice, D. E. (Ed.)
Modern Morphometrics in Physical Anthropology
Kluwer Academic/Plenum Press
REM Three male Gorilla gorilla gorilla
Three male Pan troglodytes.
REM Images contrast enhanced.
REM Notice images carry scale factors from tpsDig.

"P1.1" "P1.2" "P2.1" "P2.2" ...

Figure 5.9: Dialog for saving results of superimposition to an R-format data file.

47

"174722" 0.171409 -0.220589 -0.511699 -0.144829 ...
"174723" 0.168923 -0.167475 -0.560547 -0.178442 ...
"176225" 0.211313 -0.233748 -0.562994 -0.122757 ...
"176228" 0.155567 -0.130194 -0.571394 -0.210861 ...
"220065" 0.144327 -0.175802 -0.561667 -0.199902 ...
"220326" 0.169208 -0.150651 -0.559290 -0.199348 ...

NOTE: Not shown in the above example, output now includes object group labels and indices
and UserVars.

So, we have loaded a data file, inspected the data, carried out a generalized
Procrustes superimposition of the landmark point configurations, and saved
these superimposed coordinates to a file readily readable into R for subsequent
statistical analysis. Those steps probably represent the overwhelming majority
of analyses done in geometric morphometrics. It is left as an exercise to confirm
the data can be brought into R for manipulation and analysis and for the user
to do the same with the sample 3D data set.

48

49

 6 More Complex Examples
NOTE: The figures in this chapter may not reflect the extensive reorganization
of the program interface in the latest version. Translation of these examples to
the new interface, though, should be straightforward.

 6.1 Whole-Configuration Reconstruction (with Batch Processing)
For his research as a Master's student at Florida State University, Aki
Watanabe examined ontogenetic variation in crocodilian crania (Watanabe
2012; Watanabe and Slice 2014). Data for this project consisted of 3D
coordinates digitized from museum specimens using a Microscribe
(http://www.3d-microscribe.com/) digitizer. However, it would be very difficult
to collect a full set of landmark coordinates covering the entire cranium due to
positioning and access problems. Instead, landmark coordinates were collected
separately for the top and bottom of these relatively flat crania making sure
that a set of three (more would have been better) landmarks were common to
both sets. These common landmarks could then be used to reassemble to the
sides of the cranium into a single representation of the original specimen.
Reassembly of many crania would be required. This problem motivated the
initial development of the batch-file capabilities of Morpheus et al.

Figure 6.1 shows an example of data for one specimen (included in the sample
data sets). The upper row shows the dorsal (green) landmarks for one specimen
of American alligator (Alligator mississippiensis). The left figure shows a
superior view of the data, while the right is an oblique view. The lower row is
the matching data for the ventral part of the cranium (blue). Larger, darker-
colored symbols indicate the landmarks common to both sets of data. What is
required is to fit the landmarks from the two parts of the cranium together
using the common points.

http://www.3d-microscribe.com/

50

Figure 6.1: Original data from the cranium of an American alligator (Alligator
mississippiensis). The upper row shows the dorsal (green) landmarks in superior
(left, as digitized) and oblique (right) views. The lower row shows the ventral
(blue) landmarks in superior (left, as digitized) and oblique (right) views. The
larger symbols indicate the landmarks common to both sets of data. Note that as
digitized, the ventral landmarks are mostly above the common landmarks as the
cranium was upside down.

The following two batch files (included with data in this distribution) were
developed to perform the required tasks. Lines beginning with “REM“ (for
“remark”) are ignored to allow comments. Data file names are of the form

51

“unique_id-dors.mdt” and “unique_id-vent.mdt”, where “unique-id” is the unique
identifier indicating an individual specimen and “-dors” and “-vent” indicate
files with dorsal and ventral landmark coordinates.

The first file defines variables for the unique identifiers used in the datafile
names. It then invokes a second batch file where the variables are used in the
relative complex set of tasks needed to carry out the desired operations.
Variables can be redefined and the second batch file called as many times as
needed from within the first batch file:

REM Morpheus et al. batch processing example

REM This is an example batch file that defines
REM variables representing unique text in the names
REM of files to be processed.

REM Here is where we define the unique parts of the
REM file name(s).
define fn allmis_A_AMNH9043

REM Now we call the merging commands that will
REM substitute "allmis_A_AMNH9043" for "fn"
batch 02_batch_merge.btc

REM Repeat as needed. E.g.,...
REM define fn allmis_A_AMNH9047
REM batch 02_batch_merge.btc
REM define fn allmis_A_AMNH9127
REM batch 02_batch_merge.btc

In the second batch file, the value of the variable defined in the first bath file is
used to carry out the desired tasks. Ellipses (“...”) indicates lines deleted to
save space.

REM Morpheus et al. batch processing example.

REM fn has been defined in the calling batch file
REM and used to identify individual files to be
REM processed. In this case, we have dorsal and ventral
REM landmark coordinates from the same cranium stored in.
REM separate files. The first three points in both files
REM are homologous. We need to fill out both sets so
REM all corresponding points are homologous.

REM NOTE: the APPEND and INSERT commands have changed
REM from earlier versions. Those were of the form:
REM APPEND p MISSING o 1

52

REM INSERT p 4 MISSING o 1
REM As there is no common scenario in which one could
REM reasonably provide actual coordinates, the specification
REM of "MISSING" was deemed entirely unnecessary. The new
REM syntax for these commands, used below, is of the form:
REM APPEND p o 1
REM INSERT p 4 o 1

REM Open the first file and append the second.
REM We now have two objects with different numbers of points.
OPEN fn-dors.mdt
APPEND fn-vent.mdt

REM Fill out both data sets.
REM Append ventral points as missing to dorsal data.
APPEND p o 1
APPEND p o 1
APPEND p o 1
...
APPEND p o 1
APPEND p o 1
APPEND p o 1

REM Insert dorsal points at position 4 (the first three are
REM homologous) as missing to ventral data.
INSERT p 4 o 2
INSERT p 4 o 2
INSERT p 4 o 2
...
INSERT p 4 o 2
INSERT p 4 o 2
INSERT p 4 o 2

REM The following approach is much more efficient
REM than demoting individual points.
REM Demote all 134 points
demote p *
REM Now, promote the common points (1-3) in both.
promote p 1
promote p 2
promote p 3

REM GPA the two configurations.
REM Fitting will only use the remaining primary points
REM 1-3 which should match nearly perfectly as they are
REM the same points from the same cranium.
REM Because the common points formed a planar triangle
REM (not the best choice for 3D data), we must not allow
REM reflections.
super set allowreflections false
super gpa

53

REM Restore the configurations to their original size.
super restore scale

REM Compute the grand mean of the two objects.
REM The grand mean is a reconstruction of the
REM entire configuration of cranial landmarks
REM from the original two files.

REM Both configurations have the first three points in
REM common, which should differ only by digitizing error.
REM The remaining are all data paired with MISSING values.
REM Hence, the mean will be those original coordinates
REM re-aligned by the common points.
OBJECTS SAVE MEANS GRAND fn_merged.mdt

REM Reopen and rename grand mean for later merging
REM of many crania into a single data set. Otherwise,
REM they all have the same object name "grand_mean"
OPEN fn_merged.mdt
OBJECT RENAME 1 fn
SAVEAS fn_merged.mdt

REM That's it. Will return to the calling batch file
REM which can redefine fn to process data for another
REM cranium.

The following is some heavily edited batch-file output. The batch level and line
number are output prior to the execution of a batch line command. The batch
level is indicated by the number of periods preceding the line number - '.' first-
level batch file, '..' second-level batch file, etc. Remark lines are echoed to the
output. Blank lines are counted, but ignored. In the following, ellipses (“...”)
indicated lines deleted to save space.

==
Command: BATCH 01_batch_def.btc

.Processing batch file
/Users/myaccount/data/batch/01_batch_def.btc

==
.Batch Line 1
Command: REM Morpheus et al. batch processing example

Morpheus et al. batch processing example

==
.Batch Line 3

54

Command: REM This is an example batch file that defines

This is an example batch file that defines

...

==
.Batch Line 9
Command: DEFINE fn allmis_A_AMNH9043

fn = allmis_A_AMNH9043

==
.Batch Line 11
Command: REM Now we call the merging commands that will

Now we call the merging commands that will

==
.Batch Line 12
Command: REM substitute "allmis_A_AMNH9043" for
"allmis_A_AMNH9043"

substitute "allmis_A_AMNH9043" for "allmis_A_AMNH9043"

==
.Batch Line 13
Command: BATCH 02_batch_merge.btc

..Processing batch file
/Users/myaccount/data/batch/02_batch_merge.btc

==
..Batch Line 1
Command: REM Morpheus et al. batch processing example.

Morpheus et al. batch processing example.

...

==
..Batch Line 13
Command: OPEN allmis_A_AMNH9043-dors.mdt

 1 3D object loaded from
/Users/myaccount/data/batch/allmis_A_AMNH9043-dors.mdt

 Primary points total: 78
 Primary points missing: 23
 Primary points per object: 78

55

*** Contact author to request additional output ***

...

==

..Processing complete of batch file
/Users/myaccount/data/batch/02_batch_merge.btc

==
.Batch Line 15
Command: REM Repeat as needed. E.g.,...

Repeat as needed. E.g.,...

...

==

.Processing complete of batch file
/Users/myaccount/data/batch/01_batch_def.btc

==

Figure 6.2 shows the results of the above process. The image on the left is not
produced by the batch files, but was, instead, generated by hand to illustrate
an intermediate stage in data merging. It shows the dorsal (green) and ventral
(blue) datasets as two objects fit together by their common landmarks (larger
symbols). The image on the right is the final object that is the average of the
two objects in the left image that was saved as single, reconstructed specimen.
At this point, the common points are still classified as primary points while
those unique to either the dorsal or ventral components are still classified as
secondary points. Promoting all points to primary status would be the next
step prior to further morphometric analysis.

56

Figure 6.2: Intermediate and final results of data merging. The image on the left
shows the dorsal (green) and ventral (blue) landmarks after positioning with
their common points (larger symbols). The image on the right shows the final,
merged data set that was saved as a single object. The white landmarks are the
points unique to the dorsal and ventral parts of the cranium and would be
promoted to primary status prior to subsequent morphometric analysis.

 6.2 High-dimensional Data
Viscosi et al. (2009) examine morphometric variation in the leaves of four
species of oak trees. Their analyses used landmarks defined relative to the tip
and base of the leaf and included, as do most such analyses, a principal
components analysis to summarize the variation within and between groups.
Some of these data are included in the sample data files to illustrate the
flexibility of the design of Morpheus et al. to produce results and analyses not
hardcoded into the program.

57

The relevant data file is the leaves.mdt file found in the “nd” (for n-dimensional)
data subdirectory. This file contains data for 118 objects in four groups. Each
object has coordinates for a single point in a twenty-two-dimensional space.
Figure 6.3 shows a plot of the first object.

What these coordinates represent are the coordinates of individual leaves in the
space of the twenty-two principal components. By default, higher-dimensional
data are shown as two-dimensional plots. In Figure 6.3, the first specimen is
shown plotted on the first two dimensions which are PC1 and PC2. By clicking
the “All” button on the plot window one can produce a plot of all specimens on
these two PCs as shown in Figure 6.4, where the groups are distinguished by

Figure 6.3: A 2D plot of the first specimen of high-dimensional data.

58

color and symbol and indicate leaves of different species.

The dimensions (PCs in this case) that are plotted may be selected using the
“Var” combo boxes. Figure 6.5 shows the plot of the same data on PCs 1 and 5.

Figure 6.4: A 2D plot of "All" specimens of high-dimensional data. The
dimensions are the PC scores, so this is a PCA plot of, in this case, PC1 vs. PC2.

59

Higher dimensional data may also be plotted as interactive three-dimension
plots by selecting the “3D” button in the toolbar as shown in Figure 6.6. In this
figure, a data-bounding box is displayed to enhance the three-dimensional
appearance in the figure.

Figure 6.5: A 2D plot of "All" specimens of high-dimensional data. The
dimensions are the PC scores, so this is a PCA plot of, in this case, PC1 vs. PC5.

60

Three-dimensional plots default to plotting dimensions one, two, and three for
higher-dimensional data, but these can be changed using the “Var” combo
boxes. For two-dimensional data, the third axes defaults to “null” so that the
user has a rotatable, flat representation of the data, but, again, this can be
changed to any combination of available axes.

 6.3 References
Viscosi, V., P. Fortini, D. E. Slice, A. Loy, and C. Blasi. 2009. “Geometric
Morphometric Analyses of Leaf Variation in Four Oak Species of the Subgenus
Quercus (Fagaceae).” Plant Biosystems - An International Journal Dealing with
All Aspects of Plant Biology 143 (3): 575–587.

Figure 6.6: A 3D plot of "All" specimens of high-dimensional data. The
dimensions are the PC scores, so this is a PCA plot of, in this case, PC1 vs. PC2
vs. PC3. A bounding box is shown to enhance the 3D appearance of the plot.

61

doi:10.1080/11263500902775277.

Watanabe, A. 2012. The ontogeny of cranial morphology in extant crocodilians
and its phylogenetic utility: a geometric morphometric approach. MS Thesis,
Florida State University.

Watanabe, A, and D E Slice. 2014. The Utility of Cranial Ontogeny for
Phylogenetic Inference: A Case Study in Crocodylians Using Geometric
Morphometrics. Journal of Evolutionary Biology 27 (6): 1078–92.
doi:10.1111/jeb.12382.

62

63

 7 Commands

Program commands may be entered in the command-line area of the text pane.
The menu system simply provides an easy method for the construction of these
commands, which are then submitted to the program for processing. In many
cases, the selection of a menu item will bring up a dialog with a skeleton of the
command presented for editing by the user.

The menu system for this version of Morpheus et al. has been extensively
revised. Submenus are now grouped based on the operations contained therein
– viewing, editing, processing, etc. Within each submenu, commands are
organized according to the type of data to which they are relevant – objects,
points, etc.

The submenus of the main menu (Figure 7.1) are presented below, as are their
commands and lower-level submenus. See the “What's new?” section of
“Introduction” chapter for an explanation of the use of the iSeq command
parameter.

 7.1 File

Figure 7.1: The main menu.

Figure 7.2: The “File” submenu.

64

The “File” submenu (Figure 7.2) provides access to choices and submenus
related to reading and writing data, log, and other files.

 7.1.1 File|Open...
Command: OPEN filename

Selecting the “File|Open...” menu choice presents the user with a file-selection
dialog box highlighting files with the .mdt extension. This is the default
extension used for Morpheus data files, but this is not enforced, so the user
can select other files by choosing the “All Files” file format.
Once selected, the program attempts to load the specified data file. Example
output is shown below. The warning notes that it has been detected that the
file contains older formatting tags associated with the original Morpheus et al.
program (see the “Morpheus Data Files (.mdt)” chapter). The number of objects
loaded, their dimensionality, and file name are shown next. This is followed by
a summary of that data: number of primary points, primary points per object
(which can be variable), any visual links that were specified and their
definitions, the total number of images, and the number of images per object
(usually one, but not strictly required).
After the initial data is loaded, any commands embedded in the data file are
applied to the data. In this case, the six objects were grouped into two groups
of three and these groups given more meaningful labels.

==
Command: OPEN scapulae.mdt

 WARNING: Converting old-format, embedded LABEL command.

 6 2D objects loaded from /Users/myaccount/data/2d/scapulae.mdt

 Primary points total: 60
 Primary points per object: 10
 Links: 10
 5 8
 8 10
 10 9
 9 5
 4 1
 1 5
 5 2
 2 6
 6 3
 3 7
 Images total: 6
 Images per object: 1

*** Contact author to request additional output ***

65

==
Command: GROUP 3 3

 6 objects in 2 groups grouped by count...

 1) g1:3 - 174722, 174723, 176225
 2) g2:3 - 176228, 220065, 220326

==
Command: LABEL GROUPS Gorilla Pan

 6 objects in 2 groups grouped by count...

 1) Gorilla - 174722, 174723, 176225
 2) Pan - 176228, 220065, 220326

 7.1.2 File|Append...
Command: APPEND FILE filename

The “File|Append...” menu choice allows one Morpheus data set to be
appended to the current object list. The user is presented with a file-selection
dialog box and the appropriate command-line command generated. An error is
displayed if there is not an existing object list to which to append the new data.

A good use of this feature is to save a specimen-specific set of graphical links to
a file, then append those to different data files related to that type of specimen.
For instance, one might have a link file for turtles or human face scans, as long
as all data sets contained the same landmarks in the same order.

If the data are grouped, an error occurs and the append routine aborted. There
is no clear action to take with respect to how to introduce new data into a
grouped data structure.

Finally, note the “FILE” term is not required, but should be used. The default
action of the APPEND command is to append a data file to a current data list,
but there are other APPEND commands that need to be distinguished. For
instance, one can APPEND points to objects.

 7.1.3 File|Save As...
Command: SAVEAS filename

The “File|Save As...” menu choice allows for saving the current data to a
specified file. This choice opens the usual file-selection dialog for saving files

66

and generates the appropriate SAVEAS command. Depending upon the state of
the filemode program parameter, if the specified file exists, the users is asked
how to handle the situation.

Morpheus et al. intentionally does not have a “File|Save” menu choice or SAVE
command. In earlier versions of the program, it was found that this made it too
easy to overwrite original data files with data that had been transformed by the
program. It was deemed better to require the user to explicitly save the current
data to a specific file, even if that is the original data file.

 7.1.4 File|Close
Command: CLOSE

The CLOSE command is currently disabled. If it were functional, it would clear
the current object list releasing all related resources. I suppose I thought this
was useful at some time, but have never had need to enable it. Users who do
want or need this ability should contact the author. It should be a trivial
addition.

 7.1.5 File|Import
Command: IMPORT format filename

The “File|Import” submenu (Figure 7.3) supports the import of data files in
non-Morpheus format. Details of these can be found in the Other “Supported
Data Formats” chapter of this documentation. The grayed elements in this
menu are not yet supported. Additional dialogs may be presented to clarify the
structure of the data contained in a file.

Figure 7.3: The “File|Import” submenu.

67

Of particular interest is the NTSYS4 format. The simple organization of this
format – a header line describing the number of rows and columns of a data
matrix and the coding for missing data, if present, followed by optional labels
and data values in row-major format, make it particularly amenable to
importing larger data sets into Morpheus. Line breaks in NTSYS files are
ignored and can be included to facilitate editing or visually inspecting the data
file.

 7.1.6 File|Export
Command: EXPORT format filename

The “File|Export” submenu (Figure 7.4) supports the export of data to files in
non-Morpheus format. Details of these can be found in the “Other Supported
Data Formats” chapter of this documentation. The grayed elements in this
menu are not yet supported. Additional dialogs may be presented to clarify the
structure of the data to be contained in a file.

 7.1.7 File|New from images
The “File|New” submenu (Figure 7.5) provides access to menu items that
support the direct loading of multiple image files into the program as a new
data structure. These can be specified as either sets of supported two-
dimensional images or three-dimensional meshes.

4 Rohlf, F. J. 2008. NTSYSpc: Numerical Taxonomy System, ver. 2.20. Exeter Publishing, Ltd.:
Setauket, NY. (http://www.exetersoftware.com/cat/ntsyspc/ntsyspc.html)

Figure 7.4: The “File|Export” submenu.

68

 7.1.8 File|New from images|2D...
Command: NEW 2D filename [filename ...]

The “File|New from images|2D...” menu choice opens a file-selection dialog
that allows the user to select multiple two-dimensional images from which to
build a new main data structure. Images in any supported format are made
available in the dialog. Selecting images and clicking the “Open” button
replaces the currently loaded data with a new data set including the selected
images. These data can then be saved or exported to a Morpheus et al. or other
format file. In the latter case, exporting to a tps file would be similar to using
the tpsUtil function to create a tps file from images for use in tpsDig. Example
output is shown below.

==
Command: NEW 2D 174722D-2.JPG 176225D-2.JPG 220065D-2.JPG

Creating new data set...
Object added with image 174722D-2.JPG
Object added with image 176225D-2.JPG
Object added with image 220065D-2.JPG

==

 7.1.9 File|New from images|3D...
Command: NEW 3D filename [filename ...]

The “File|New from images|3D...” menu choice opens a file-selection dialog
that allows the user to select multiple surface-mesh files from which to build a
new main data structure. Surfaces in any currently supported format are made

Figure 7.5: The “File|New” from images submenu.

69

available in the dialog. Selecting images and clicking the “Open” button
replaces the currently loaded data with a new data set including the selected
images. These data can then be saved to a Morpheus et al. data file. Example
output is shown below.

==
Command: NEW 3D Papio.ply Piliocolobus.ply Pithecia.ply

Creating new data set...
Object added with surface Papio.ply
Object added with surface Piliocolobus.ply
Object added with surface Pithecia.ply

==

 7.1.10 File|Batch...
Command: BATCH filename

The “File|Batch” menu choice presents a file-selection dialog allowing the user
to choose a Morpheus batch file for execution. These files generally contain a
list of commands that would normally be typed into the command line or
constructed by various menu choices. The default extension for such files is
“.btc”, but this is not strictly enforced. Some commands unique to batch
processing are available. See the “Batch Processing” chapter for details.

 7.1.11 File|Log

The “File|Log” submenu (Figure 7.6) provides access to the Morpheus logging
system. This causes output to the listing window to be saved to a user-specified

Figure 7.6: The “File|Log” submenu.

70

ASCII text file.

 7.1.12 File|Log|Start...
Command: LOG START filename

The “File|Log|Start...” menu choice presents a file-save dialog that allows the
user to specify the file to which subsequent listing-window output will be
saved. A reasonable extension for such files is .log, but this is not strictly
enforced. Example output is shown below.

==
Command: LOG START mylog.log

START logging to /Users/myaccount/data/mylog.log

==

 7.1.13 File|Log|Stop
Command: LOG STOP

The “File|Log|Stop” menu choice forces any buffered output to be written to
the currently open log file and closes that file. Example output is shown below.

==
Command: LOG STOP

STOP logging to /Users/myaccount/data/mylog.log

==

 7.1.14 File|Exit
The “File|Exit” choice terminates the program. This is the only method of
termination that will save the current configuration data to the morpheus
configuration file. That is, exiting the program via the “Close Window” frame
control or by keyboard shortcut does not save the configuration information.

 7.2 View

71

The “View” submenu (Figure 7.7) provides access to functions and other menus
related to the listing of objects, definitions, etc. These functions are organized
by data type – Objects, Points, etc.

 7.2.1 View|Objects

The “View|Objects” menu (Figure 7.8) provides access to choices that output
various object-related information to the listing window.

 7.2.2 View|Objects|Info
Command: OBJECT LIST

The “View|Object|Info” menu choice outputs information about the currently
loaded object list including the number of objects, the source file, and
summaries of point types, links, images, etc. Example output is shown below.

==
Command: OBJECT LIST

 6 2D objects loaded from /Users/myaccount/data/2d/scapulae.mdt

 Primary points total: 60
 Primary points per object: 10
 Links: 10
 5 8

Figure 7.7: The “View” submenu.

Figure 7.8: The “View|Objects” submenu.

72

 8 10
 10 9
 9 5
 4 1
 1 5
 5 2
 2 6
 6 3
 3 7
 Images total: 6
 Images per object: 1

*** Contact author to request additional output ***

==

 7.2.3 View|Objects|Object i...
Command: OBJECT LIST *
Command: OBJECT LIST i

The “View|Objects|Object i...” menu choice opens a dialog with an editable
skeleton of the command. The default form, OBJECT LIST *, outputs a
summary of the data for all objects to the screen. The more specific form,
OBJECTS LIST i, outputs more detailed information about the specified object.
Example output for both is shown below. An ellipsis (“...”) indicates text deleted
to save space.

==
Command: OBJECT LIST *

 Obj1: 174722
 User vars: 0
 Primary points: 10
 Secondary points: 0

 ...

 Obj6: 220326
 User vars: 0
 Primary points: 10
 Secondary points: 0

*** Contact author to request additional output ***

==
Command: OBJECT LIST 4

73

 Obj4: 176228
 Dim: 2
 Points: 10
 Primary points: 10
 Secondary points: 0
 1. P "" 173.933000 45.933000
 2. P "" 9.947000 71.095000
 3. P "" 165.887000 121.855000
 4. P "" 167.204000 53.979000
 5. P "" 89.965000 38.912000
 6. P "" 60.562000 105.471000
 7. P "" 181.101000 98.596000
 8. P "" 200.996000 108.251000
 9. P "" 204.506000 92.013000
 10. P "" 221.183000 100.059000

 P=Primary S=Secondary

*** Contact author to request additional output ***

==

 7.2.4 View|Objects|Groups
Command: OBJECT LIST GROUPS

The “View|Object|Groups” command outputs a summary of the current
grouping of the objects in the object list. An example is shown below.

==
Command: OBJECT LIST GROUPS

 6 objects in 2 groups grouped by count...

 1) Gorilla - 174722, 174723, 176225
 2) Pan - 176228, 220065, 220326

==

 7.2.5 View|Objects|List|Transformation parameters
Command: LIST OBJECT TRANSFORMS

The “View|Objects|Transformation parameters” menu choice outputs the
current translation, scale, and rotation parameters that have been applied to
the coordinate data of each object in the list. Example output after a
generalized Procrustes superimposition is shown below. An ellipsis (“...”)
indicates text deleted here to save space.

74

==
Command: LIST OBJECT TRANSFORMS

174722
 t= -0.560312 -0.442820
 r= 0.003037
 H= 1.000000 0.000000
 0.000000 1.000000
...
220326
 t= -0.711541 0.210726
 r= 0.004497
 H= 0.972400 0.233321
 0.233321 -0.972400

==

 7.2.6 View|Points

The “View|Points” submenu (Figure 7.9) provides access to functions related to
listing various point-related properties.

 7.2.7 View|Points|Report
Command: LIST POINTREPORT

The “View|Points|Report” command generates a tabular summary of the
points for all specimens in the currently loaded object list, their status as
primary or secondary, and whether or not the points are flagged as missing.
The key at the bottom of the output explains the notation used. Example
output is shown below.

==
Command: LIST POINTREPORT

Figure 7.9: The “View|Points” submenu.

75

 Objects: 10
 Primary points total: 350
 Primary points missing: 50
 Primary points per object: 35
 12345678901234567890123456789012345
 1. 10M88**.............*.*.*.........
 2. 1C95 **.............*.*.*.........
 3. 2B96 **.............*.*.*.........
 4. 2E90 **.............*.*.*.........
 5. 3B87 **.............*.*.*.........
 6. 4B88 **.............*.*.*.........
 7. 5A89 **.............*.*.*.........
 8. 5E94 **.............*.*.*.........
 9. 6A84 **.............*.*.*.........
 10. 8A82 **.............*.*.*.........

 .=PRIMARY *=MISSING PRIMARY s=SECONDARY x=MISSING SECONDARY

 7.2.8 View|Points|Missing
Command: LIST MISSINGREPORT

The “View|Points|Missing” menu choice generates a summary of missing point
data in the current object list. It provides the total number of objects in the
current list and the number of points per object. It then lists the points
individually and reports the number of objects with missing data for this point,
the total number of objects with this point (missing or not) and the proportion
of those objects having this point, but with it marked as missing data. Next,
the individual objects are listed with the total number of missing points
associated with them, their total number of points, and the proportion missing.

The proportions are better for comparative purposes than raw numbers. The
output can be used to identify points missing in all or most objects and
candidates for deletion, and to identify objects with particularly poor data
representation, again candidates for deletion. In the example output below,
point eight (and four other points) are missing in all objects.

==
Command: LIST MISSINGREPORT

 Total Objects: 10
 Points per object: 35

 m=number missing
 n=total in data set

76

 pro=m/n

 Points: # m n pro
 1 0 10 0.00

...
 8 10 10 1.00
 9 0 10 0.00

...
 35 0 10 0.00
 Objects: # m n pro
 1 5 35 0.14

...
 10 5 35 0.14

 7.2.9 View|Points|Links
The “View|Points|Links” menu choice generates and displays a list of the
current link definitions. Sample output is shown below.
==
Command: LINK LIST

Links...
1. 5 8
2. 8 10
3. 10 9
4. 9 5
5. 4 1
6. 1 5
7. 5 2
8. 2 6
9. 6 3
10. 3 7

==

 7.2.10 View|Points|Centroid Size
Command: LIST CENTROIDSIZE

The “View|Points|Centroid Size” menu choice generates a list of the centroid
sizes of the current objects. These values were calculated when the data were
loaded, and any object with missing data for any of the primary points will have
its CS reported as *MISSING*. Example output is shown below.

==
Command: LIST CENTROIDSIZE

77

Centroid Size
174722: 329.315534
174723: 313.577934
176225: *MISSING*
176228: 226.825204
220065: 211.392596
220326: 222.377599

==

 7.2.11 View|Points|Superimposition

The “View|Points|Superimposition” submenu (Figure 7.10) provides access to
listing functions related to the superimposition of n-dimensional point
(landmark) configurations including, for instance, generalized Procrustes
analysis.

 7.2.12 View|Points|Superimposition|Options
Command: SUPERIMPOSITION LIST OPTIONS

The “View|Points|Superimposition|Options” choice causes the current
superimposition options to be output to the listing window. Example output is
shown below.

==
Command: SUPERIMPOSITION LIST OPTIONS

Procrustes options...

 intialReferenceI = 1 [i,random]
 allowReflections = true [true,false]
 paCritical = 1.0E-4
 maxIterations = 10

Figure 7.10: The “View|Points|Superimposition” submenu.

78

 strictFitting = false [true,false]

General options...

 finalOrientation = none [none,pca]

==

 7.2.13 View|Points|Superimposition|SS

The “View|Points|Superimposition|SS” menu (Figure 7.11) provides access to
functions for computing the sum-of-squared deviations of the primary points of
the objects in the current list to the indicated reference point or configuration.

 7.2.14 View|Points|Superimposition|SS|Mean
The “View|Points|Superimposition|SS|Mean” choice is not yet implemented.

 7.2.15 View|Points|Superimposition|SS|Initial Reference
The “View|Points|Superimposition|SS|Reference” choice is not yet
implemented.

 7.2.16 View|Points|Superimposition|SS|Origin
The “View|Points|Superimposition|SS|Origin” choice is not yet implemented.

 7.2.17 View|User

Figure 7.11: The “View|Points|Superimposition|SS” submenu.

79

The “View|User” submenu provides access to listing functions related to user-
defined values. There are two types of such values. The first involves user-
defined variables included in morpheus data files, such as USERCHAR,
USERINT, etc. The second type of user-defined value are those defined by the
user for use in batch files. These take the form of specifying text to be
substituted for '$'-delimited variables, e.g., fn = myfile.mdt. In this way, the
user can create complex, generic batch files that can be applied to different
specific files or file sets. See the “More Complex Examples” and “Batch
Processing” chapters of this document for an example of the use of these
variables.

 7.2.18 View|User|UserVars
This function is not yet implemented.

 7.2.19 View|User|Defines
Command: DEFINE LIST

The “View|User|Defines” generates and displays a list of the currently defined
program user-variables. These variables substitute a specific text string
anywhere the '$'-delimited variable name is found in commands except for
(re)definition commands. In the example output shown below, the fn was
defined and used to specify the male component of a set of files with structured
filenames, e.g., Section_Male_L.mdt. In the batch files, this file would be
referred to as Section_fn_L.mdt, and redefining fn as “Female” would
allow the similar processing of the data for the females.

==
Command: DEFINE LIST

fn = Male

==

Figure 7.12: The “View|User” submenu.

80

 7.2.20 View|Measurements

The “View|Measurements” submenu (Figure 7.13) provides access to
commands for listing current, global measurement definitions and the the
computed values of these measurements for the currently loaded objects.
Measurement commands are invoked with the shortcut, “MEA”.

 7.2.21 View|Measurements|Definitions
Command: MEA LIST

The “View|Measurements|Definitions” menu choice outputs a list of the
currently loaded, global measurement definitions to the screen. The following is
an example.

==
Command: MEA LIST

1. DIST "length" 8 1
2. ANGL "ANGL" 8 4 1
3. ARCL "dorsal fin arc length" 4
4. PERI "body perimeter" 1
5. AREA "pupil area" 2

==

 7.2.22 View|Measurements|Values
Command: MEA LIST *

The “View|Measurements|Values” choice displays a list of the measurement
definitions and their computed values for the specified objects in the listing
window. Currently, only the wildcard, '*', is supported to indicate that
measurement values for all objects should be displayed. If a particular
measurement specification is invalid, say 'DIST "" 1 78' for an object with only

Figure 7.13: The “View|Measurements” submenu.

81

twelve primary points, the value is reported as “NaN” - “Not a Number”. If the
measurement is defined, but necessary data for its computation is marked as
missing, the value is reported as “*MISSING*”.

An example is shown below. The ellipsis (“...”) indicates data deleted to save
space. After the measurement definitions, the results begin with a row number
indicating the object being measured and its label. Measurements follow on the
same line.

==
Command: MEA LIST *

1. AREA "AREA" 1
2. AREA "AREA" 2
3. AREA "AREA" 3
4. TRIAREA "TRIAREA" 3 1 2
5. TRIAREA "TRIAREA" 4 1 2
6. TRIAREA "TRIAREA" 4 1 3
7. TRIAREA "TRIAREA" 6 1 2
8. TRIAREA "TRIAREA" 7 1 2
9. TRIAREA "TRIAREA" 9 1 2
10. DIST "DIST" 2 1
11. DIST "DIST" 3 0
12. DIST "DIST" 3 1
13. DIST "DIST" 3 2
14. DIST "DIST" 9 1
15. TRIAREA "TRIAREA" 3 1 2
16. ARCL "ARCL" 1
17. PERI "PERI" 1
18. ARCL "ARCL" 2
19. PERI "PERI" 2
20. ARCL "ARCL" 3
21. PERI "PERI" 3

1. "O1" 3.141433 3.455850 NaN 0.500000
...

2. "w/Missing" NaN 3.455850 NaN *MISSING* 0.000000
...

ListAll Under construction.

==

 7.3 Edit

82

The “Edit” submenu (Figure 7.14) provides access to commands for the
modification and reorganization of the data either directly by the user or
algorithmically.

 7.3.1 Edit|Objects

The “Edit|Objects” submenu (Figure 7.15) provides access to commands
related to the modification (grouping, deletion, etc.) of entire data objects that
are usually the specimens in a study.

 7.3.2 Edit|Objects|Group

Figure 7.14: The “Edit” submenu.

Figure 7.15: The “Edit|Objects” submenu.

83

The “Edit|Objects|Group” submenu (Figure 7.16) provides access to
commands related to the grouping of objects in the current list.

 7.3.3 Edit|Objects|Group|By Count...
Command: GROUP n1 n2 n3 ...

The “Edit|Objects|Group|By Count...” menu choice allows the user to group
objects in the current list by an ordered list of integers indicating the number
of objects in each group. This choice will present a dialog into which the user
can enter the number of objects in each group, n1, n2, etc. The first n1 objects
are assigned to the first group, the next n2 objects are assigned to group 2, and
so on. If there are any unassigned objects after the program follows the
requested grouping, the remaining objects are assigned to a final group. That
is, you do not have to specify the number of objects to be in the final group.

If the objects are already grouped, they are regrouped according to the
specification. Groups are given default labels with the pattern, “gi:n_i”, where
'g' indicates a group, 'i' indicates the ith group, and n_i indicates the number of
objects in the ith group.

Following grouping, the groups and their members (by label) are listed as
shown below.

==
Command: GROUP 2 2

 6 objects in 3 groups grouped by count...

 1) g1:2 - 174722, 174723
 2) g2:2 - 176225, 176228
 3) g3:2 - 220065, 220326

==

Figure 7.16: The “Edit|Objects|Group” submenu.

84

 7.3.4 Edit|Objects|Group|File...
Command: GROUP filename

The “Edit|Objects|Group|File...” menu choice allows the user to select a file in
which group membership is encoded. See the “Other Morpheus Formats”
chapter for more information on this file. Basically, the file contains a number
of lines, one for each object, each containing a string indicating group
membership. For instance, the file might contain a list of 'f's and 'm's indicating
the sex of each object. The default extension for such files is .grp, but this is
not strictly enforced.

Morpheus reads though the file to determine the total number of groups based
on the number of unique classifiers, then groups the data accordingly. The
group designation classifiers are used as group labels. Example output is
shown below. An ellipsis (“...”) indicates content deleted to save space, except
the first, which is program generated.

==
Command: GROUP 3d_id_trim.grp

 417 objects in 20 groups grouped by file:
/Users/myaccount/data/3d_id_trim.grp...

 1) WHITE_AMERICAN:MALE - 10M88, 1C95, 3B87, 4B88, 5A89, 5E94,
 6A84, T-1116, T-1170, T-1204R, T-1318, T-1458, T-246, T-
301R,
 T-372, T-493, T-496, T-501, T-607R, T-622R, T-633, T-730,
 T-730, T-772, T-802, T-806, T-806, T-861, T-867, T-918
 2) UNKNOWN:MALE – 2B96

 ...

 19) BLACK_AMERICAN:MALE - T-1035, T-1081, T-1108, T-1115, T-
1117,
 T-1144, T-1149R, T-1200, T-1280, T-1307, T-1349, T-1445,
 T-1490, T-1506, T-1529, T-1573, T-1597, T-1606, T-1615, T-
438,
 T-500, T-503, T-508, T-508, T-560, T-609, T-618, T-619, T-
648,
 T-703, T-711, T-712, T-731, T-732, T-732, T-740R, T-742, T-
760,
 T-760, T-780, T-790, T-796, T-821, T-922, T-940, T-960, T-
998
 20) UNKNOWN:UNKNOWN - T-532, T-535

==

85

 7.3.5 Edit|Objects|Group|Label...
Command: LABEL GROUPS label_1 label_2 ...

The “Edit|Objects|Group|Label” menu choice allows the user to rename
groups. The user is presented with a dialog box into which they may type an
ordered series of strings that will be used for group labels. While the use of
spaces in labels is discouraged, it is supported through the use of quotation
marks around the space-containing label. Labels for all groups are not
required, and groups can be skipped over for relabelling by using '*', as shown
in the example below.

==
Command: LABEL GROUPS Gorilla Chimp

 6 objects in 2 groups grouped by count...

 1) Gorilla - 174722, 174723, 176225
 2) Chimp - 176228, 220065, 220326

==
Command: LABEL GROUPS * Pan

 6 objects in 2 groups grouped by count...

 1) Gorilla - 174722, 174723, 176225
 2) Pan - 176228, 220065, 220326

==

 7.3.6 Edit|Objects|Group|Ungroup
Command: UNGROUP

The “Edit|Objects|Group|Ungroup” choice removes object grouping. Objects
are effectively put into a single group, but a single group has no special
designation or labeling. Example output follows.

==
Command: UNGROUP

 6 objects ungrouped.
==

 7.3.7 Edit|Objects|Delete...
Command: DELETE OBJECT(S) iSeq

86

The “Edit|Objects|Delete...” menu choice opens a dialog with an editable
skeleton of the command to delete one or more objects from the current object
list. Example output is shown below. Note that objects are deleted in
descending order of their index because each deletion decrements the index of
later objects. See the “Edit|Objects|Keep...” command for a complimentary
approach to object removal/retention.

==
Command: DELETE OBJECT(S) 3,6-9

 Object 9 deleted
 Object 8 deleted
 Object 7 deleted
 Object 6 deleted
 Object 3 deleted

==

 7.3.8 Edit|Objects|Keep...
Command: KEEP OBJECT(S) iSeq

The “Edit|Objects|Keep...” menu choice opens a dialog with an editable
skeleton of the command to keep the one or more objects from the current
object list and delete the rest. This can be thought of as the complement of the
“Edit|Objects|Delete...” command. This is most convenient for extracting one
or a few objects from much larger data sets. Non-specified objects are actually
deleted in descending order of index to retain the correct indices of the
specified objects.

==
Command: KEEP OBJECT(S) -3,9,708-

 Keeping object 1
 Keeping object 2
 Keeping object 3
 Keeping object 9
 Keeping object 708
 Keeping object 709
 Keeping object 710
 Keeping object 711

==

87

 7.3.9 Edit|Objects|Reflect...
Command: OBJECT REFLECT iSeq

The “Edit|Obects|Reflect...” menu opens a dialog with a editable skeleton of
the command to reflect one or more objects. Reflection is achieved by simply
multiplying the x coordinate of data and the first column of the rotation matrix
associated with an image or surface by -1.0. Note that at this time, this has the
effect of turning surfaces “inside out”.

==
Command: OBJECT REFLECT 1,3,5

 Reflecting object 1
 Reflecting object 3
 Reflecting object 5

==

 7.3.10 Edit|Objects|Rename...
Command: OBJECT RENAME i|LAST new_name

The “Edit|Objects|Rename” menu choice opens a dialog with a editable
skeleton of the command to rename either the ith or last object in the current
object list. The LAST parameter is supported so as not to require the user to
know the exact object count when renaming a newly added object. Example
output is shown below.

==
Command: OBJECT RENAME 2 second

Label of Obj 2 changed from 174723 to second

==
Command: OBJECT RENAME LAST last

Label of Obj 6 changed from 220326 to last

==

 7.3.11 Edit|Objects|Swap...
Command: SWAP OBJECTS i j

88

The “Edit|Objects|Swap...” menu choice opens a dialog with an editable
skeleton of the command to swap the positions of two objects, i and j, in the
current object list. Example output is shown below.

==
Command: SWAP OBJECTS 4 5

 Objects 4 and 5 swapped
==

 7.3.12 Edit|Objects|Add dimension
Command: OBJECT ADDDIM

The “Edit|Objects|Add dimension” menu choice adds one dimension (2D->3D,
3D->4D, etc.) to all objects in the current data set. Coordinate values for this
dimension are all set to 0.0, and images and surfaces associated with a given
object are deleted. This function was develop to be used in combination with
the “Edit|Points|Copy...” and “Edit|Points|Adjust...” functions to add a
dimension to a data set, duplicate one of the existing points, then push that
point out into the added dimension. When done properly for appropriate data,
this can be used to combine orthogonal, two-dimensional data sets into a
three-dimensional one. Example output is shown below.

==
Command: OBJECT ADDDIM

 Adding dimension to objects...
 Processing object 1
 Processing object 2
 Processing object 3
 Processing object 4
 Processing object 5
 Processing object 6
 Dimension added to objects.

==

 7.3.13 Edit|Objects|Merge with file...
Command: FILEMERGE filename

The “Edit|Objects|Merge with file...” menu choice combines data from objects
in a second, compatible file with that of objects in the currently loaded data

89

set. The user is presented with a file-open dialog, the data are checked for
dimensional and sample-size consistency, and, if possible, the currently loaded
data structure is replaced with the combined one. Data must be of the same
dimension and both files must have the same number of objects. For instance,
if one file had seven two-dimensional objects, each with three points, and a
second file had seven two-dimensional objects with one curve, the combined
data set would be seven two-dimensional objects with three points and one
curve. Sample output is show below.

==
Command: FILEMERGE Section_Female_L_bsc3d.mdt

 257 3D objects loaded from
/Users/myaccount/Section_Female_L_bsc3d.mdt

 Primary curves total: 257
 Primary curves per object: 1

*** Contact author to request additional output ***

Section_Female_L_bsc3d.mdt merged with current object list.

==

 7.3.14 Edit|Points

The “Edit|Objects|Points” submenu (Figure 7.17) provides access to
commands related to the modifying the values of individual or groups of points
in one or more objects.

Figure 7.17: The “Edit|Points” submenu.

90

 7.3.15 Edit|Points|Adjust...
Command: POINT ADJUST i 0 [0 ...]

The “Edit|Points|Adjust...” menu choice allows the user to specify an
incremental adjustment to one or more coordinates of a specific point in all
objects. The user is presented with a dialog with a command skeleton including
parameters for the index of the point to be adjusted and the adjustments for
each dimension. Default adjustments are 0 – no adjustment. This function was
develop to be used in combination with the “Edit|Objects|Add dimension...”
and “Edit|Points|Copy...” functions to add a dimension to a data set, duplicate
one of the existing points, then push that point out into the added dimension.
When done properly for appropriate data, this can be used to combine
orthogonal, two-dimensional data sets into a three-dimensional one. Example
output is shown below for some two-dimensional data.

==
Command: POINT ADJUST 3 0 10

 Adjusting point 3 in all objects.

==

 7.3.16 Edit|Points|Append
Command: APPEND POINT MISSING OBJECT *
Command: APPEND POINT MISSING OBJECT i

The “Edit|Points|Append” menu choice presents the user with a dialog with an
editable skeleton of the command. The command appends a point flagged as
missing data to either all the objects in the current list (using the '*' parameter)
or to the ith object. The missing data value must be set prior to using this
command. Example output is shown below.

==
Command: SET missing -999

 Missing value set to: -999.0

==
Command: APPEND POINT MISSING OBJECT *

 Missing point appended to all objects

==

91

Command: APPEND POINT MISSING OBJECT 1

 Missing point appended to object 1

==

 7.3.17 Edit|Points|Copy...
Command: POINT COPY i

The “Edit|Points|Copy...” menu choice allows the user to specify a point to be
duplicated in all objects. The new point occupies the index immediately after
the duplicated one. This function was develop to be used in combination with
the “Edit|Objects|Add dimension...” and “Edit|Points|Adjust...” functions to
add a dimension to a data set, duplicate one of the existing points, then push
that point out into the added dimension. When done properly for appropriate
data, this can be used to combine orthogonal, two-dimensional data sets into a
three-dimensional one. Example output is shown below.

==
Command: POINT COPY 3

 Copying point 3 in all objects.

==

 7.3.18 Edit|Points|Delete...
Command: DELETE POINT(S) iSeq OBJECT *
Command: DELETE POINT(S) iSeq OBJECT iSeq

The “Edit|Points|Delete...” menu choice presents the user with a dialog
containing an editable command line. The command deletes one or more points
from one or more objects – both specified as iSeq index sequences or the '*' (all
objects) parameter. Points are deleted in descending order of the indices.
Example output is shown below.

==
Command: DELETE POINT(S) 1,5 OBJECT(S) 1-3

Object: 1
Deleting point: 5
Deleting point: 1

Object: 2
Deleting point: 5

92

Deleting point: 1
Object: 3

Deleting point: 5
Deleting point: 1

==

 7.3.19 Edit|Points|Demote...
Command: DEMOTE POINT(S) * OBJECT(S) *
Command: DEMOTE POINT(S) iSeq OBJECT(S) iSeq

The “Edit|Points|Demote...” menu choice presents the user with a dialog
containing an editable command string. The command demotes one or more
points in one or more objects as specified by either the '*' parameter (all points
or objects) or an iSeq specifying individual or ranges of indices. Demotion
means changing the point class from primary (used in point-based
computations) to secondary, which are ignored in computations, but carried
along with any transformations. Points are demoted in descending order of
index for no apparent reason – probably carried over from copy-and-pasting
code for deletion. Example output is shown below.

==
Command: DEMOTE POINT(S) 2-4 OBJECT(S) *

Object: 1
Demoting point: 4
Demoting point: 3
Demoting point: 2

Object: 2
Demoting point: 4
Demoting point: 3
Demoting point: 2

Object: 3
Demoting point: 4
Demoting point: 3
Demoting point: 2

Object: 4
Demoting point: 4
Demoting point: 3
Demoting point: 2

Object: 5
Demoting point: 4
Demoting point: 3
Demoting point: 2

Object: 6
Demoting point: 4
Demoting point: 3

93

Demoting point: 2

==

 7.3.20 Edit|Points|Insert...
Command: INSERT POINT(S) * OBJECT(S) *
Command: INSERT POINT(S) iSeq OBJECT(S) iSeq

The “Edit|Points|Insert...” menu choice presents the user with a dialog
containing an editable command string. The command inserts one or more
data points, marked as missing data, into one or more objects as specified by
the iSeq index parameter. The '*' character may be used to specify all points or
objects. Example output is shown below.

==
Command: INSERT POINT(S) 3 OBJECT(S) 2

Object: 2
Inserting point: 3

==
Command: INSERT POINT(S) 6 OBJECT(S) *

Object: 1
Inserting point: 6

Object: 2
Inserting point: 6

Object: 3
Inserting point: 6

Object: 4
Inserting point: 6

Object: 5
Inserting point: 6

Object: 6
Inserting point: 6

==

 7.3.21 Edit|Points|Label...
Command: LABEL POINT i new_label OBJECT *
Command: LABEL POINT i new_label OBJECT j

The “Edit|Points|Label...” menu choice presents the user with a dialog
containing an editable command string. The command sets the label of the ith
point to the specified string for either all objects (when using the '*' parameter)

94

or for just the ith object. Example output is shown below.

==
Command: LABEL POINT 1 new_label OBJECT *

 Point 1 label set to 'new_label' for all objects

==
Command: LABEL POINT 1 new_label_for_object_1 OBJECT 1

 Point 1 label set to 'new_label_for_object_1' for object 1

==

 7.3.22 Edit|Points|MakeMissing...
Command: MAKEMISSING POINT i OBJECT *
Command: MAKEMISSING POINT i OBJECT j

The “Edit|Points|MakeMissing...” menu choice presents the user with a dialog
containing an editable command string. The command marks the ith point as
missing data in either all objects (when the '*' parameter is used) or the jth
object only. Example output is shown below.

==
Command: SET missing -999

 Missing value set to: -999.0

==
Command: MAKEMISSING POINT 1 OBJECT *

 Point 1 made missing for all objects

==
Command: MAKEMISSING POINT 2 OBJECT 1

 Point 2 made missing for object 1

==

 7.3.23 Edit|Points|Promote...
Command: PROMOTE POINT iSeq OBJECT *
Command: PROMOTE POINT iSeq OBJECT iSeq

The “Edit|Points|Promote...” menu choice presents the user with a dialog

95

containing an editable command string. The command promotes one or more
points in one or more objects as specified by the iSeq or '*' parameter.
Promotion means changing the point class from secondary, which is ignored in
computations, but carried along with any transformations, to primary, which is
used for point-based computations. Promotion of primary points does nothing.
Example output is shown below.

==
Command: PROMOTE POINT 1 OBJECT *

 Point 1 promoted for all objects

==
Command: PROMOTE POINT 1 OBJECT 1

 Point 1 promoted for object 1

==

 7.3.24 Edit|Points|Swap...
Command: SWAP POINTS i j OBJECT *
Command: SWAP POINTS i j OBJECT k

The “Edit|Points|Swap...” menu choice presents the user with a dialog
containing an editable command string. The command swaps the positions of
the ith and jth points in either all objects (when using the '*' parameter) or for
the kth object only. Example output is shown below.

==
Command: SWAP POINTS 1 2 OBJECT *

 Points 1 and 2 swapped for all objects

==
Command: SWAP POINTS 1 2 OBJECT 3

 Points 1 and 2 swapped for object 3

==

96

 7.3.25 Edit|Points|Compute

The “Edit|Points|Compute” submenu (Figure 7.18) provides access to
functions that algorithmically generate new points or coordinate values and/or
associated measurements.

 7.3.26 Edit|Points|Compute|Distance-to-curve points...
Command: COMPUTE POINTS ND2C i n

The “Edit|Points|Compute|Distance-to-curve points...” menu choice opens a
dialog with an editable skeleton of the command. The command constructs, for
each n-dimensional object, a line segment between the first and last points of
the specified curve and then computes the coordinate location of points
dividing the curve into n+1 equal segments. These points are added to the
object. The coordinates of curve points that orthogonally project onto these
points are computed, interpolating as necessary, and added to the object.
Measurements are then added to the current data set to compute the distance
between the curve points and their corresponding projections. Links are also
added to aid in visualization. For complex curves, there may be a many-to-one
mapping of curve to segment points. In such cases, only the one nearest the
start of the curve is used. Example output is shown below.

==
Command: COMPUTE POINTS ND2C 1 5

 Computing points for object 1

==

Figure 7.18: The “Edit|Points|Compute” submenu.

97

Figure 7.19 show examples of the application of the ND2C function for two-
and three-dimensional curves.

Figure 7.19: The n-distances-to-curve function. a) 2D curve, b) points and
distances/links for 2D curve, c) 3D curve, d) points and distances/links for 3D
curve.

 7.3.27 Edit|Points|Compute|Sample from curve

98

The “Edit|Points|Sample from curve” submenu (Figure 7.20) provides access
to functions related to generating points by sampling curves.

 7.3.28 Edit|Points|Sample from curve|Sample...
Command: SAMPLE i/label n OPEN/CLOSED

The “Edit|Points|Sample from curve|Sample...” choice opens a dialog with
which the user can specify the curve to be sampled (either by index or label),
the number of points to sample, and whether or not the curve is open or
closed. Open curves are evenly sampled between the first and last points. For
closed curves, sampling is evenly spaced around the curve perimeter including
the distance between the last and first point. Point labels are autogenerated to
indicate the source curve and point index. Sampled points are retained in a
temporary data structure until they are explicitly merged with the data of the
current object list. Example output for the sampling of an object list containing
a single object is shown below.

==
Command: SAMPLE 1 5 OPEN

 CurveID(int): 1
 CurveType: OPEN
 NPts: 5
 PtLabel: C1_Pi

 Processing...

 Obj 1: Sampling curve 1

==

Figure 7.20: The “Edit|Points|Compute|Sample from curve” submenu.

99

 7.3.29 Edit|Points|Sample from curve|Merge...
Command: MERGE

The “Edit|Points|Sample from curve|Merge...” menu choice executes the
command to merge existing temporary data into the current object list.
Example output is shown below.

==
Command: MERGE

 Temporary data merged with current object list.

==

 7.3.30 Edit|Points|Links

The “Edit|Points|Links” submenu (Figure 7.21) provides access to functions to
manipulate the graphical links used for plotting the currently loaded data set.

 7.3.31 Edit|Points|Links|Add...
Command: LINK ADD 3 10

The “Edit|Points|Link|Add...” menu choice opens a dialog with an editable
command skeleton that allows the user to specify the endpoints, i and j,
between which a link should be drawn to aid visualization in plots. The list of
currently defined links is then displayed in the output pane. Example output is

Figure 7.21: The “Edit|Points|Links” submenu.

100

shown below.

==
Command: LINK ADD 3 10

Adding link...
Links...

1. 1 2
2. 3 4
3. 5 6
4. 7 8
5. 9 10
6. 3 10

==

 7.3.32 Edit|Points|Links|Remove...
Command: LINK REMOVE iSeq

The “Edit|Points|Links|Remove...” menu choice first displays a list of
currently defined graphical links, then opens a dialog with an editable
command line that allows the user to specify one or more links (via the iSeq
parameter) to remove from the list. Example output is shown below.

==
Command: LINK LIST

Links...
1. 1 2
2. 3 4
3. 5 6
4. 7 8
5. 9 10
6. 3 10

==
Command: LINK REMOVE 3-5

Removing link 5
Removing link 4
Removing link 3
Links...

1. 1 2
2. 3 4
3. 3 10

101

==

 7.3.33 Edit|Points|Links|Clear
Command: LINK CLEAR

The “Edit|Points|Links|Clear” command clears the link list, deleting all
currently defined links. Example output is shown below.

==
Command: LINK CLEAR

Clearing all links...

==

 7.3.34 Edit|Points|Superimposition

The “Edit|Points|Superimposition” submenu (Figure 7.22) provides access to
commands related to changing values associated with point-based
superimpositions.

 7.3.35 Edit|Points|Superimposition|Options

Figure 7.22: The “Edit|Points|Superimposition” submenu.

102

The “Edit|Points|Superimposition|Options” menu (Figure 7.23) provides
access to functions for setting point-based superimposition options and
restoring them to their default values.

 7.3.36 Edit|Points|Superimposition|Options|Set...
Command: SUPERIMPOSITION SET what value

The “Edit|Points|Superimposition|Options|Set...” choice outputs a list of the
current superimposition options to the listing window and presents the user
with a dialog with an editable skeleton of the option-setting command line. The
user edits the command line to indicate the option to be set and the desired
value. Upon pressing OK, the program attempts to set the specified option and
the results are output to the listing window. Example output is shown below.

==
Command: SUPER LIST OPTIONS

Procrustes options...

 intialReferenceI = 1 [i,random]
 allowReflections = true [true,false]
 paCritical = 1.0E-4
 maxIterations = 10
 strictFitting = false [true,false]

General options...

 finalOrientation = none [none,pca]

Figure 7.23: The “Edit|Points|Superimposition|Options” submenu.

103

==
Command: SUPERIMPOSITION SET allowreflections false

allowReflections set to FALSE

==

 7.3.37 Edit|Points|Superimposition|Options|Restore
Command: SUPERIMPOSITION SET RESTORE

The “Edit|Points|Superimposition|Options|Restore” choice restores all
superimposition options to their default values. Example output is shown
below.

==
Command: SUPERIMPOSITION SET RESTORE

Restoring options to default values...

Procrustes options...

 intialReferenceI = 1 [i,random]
 allowReflections = true [true,false]
 paCritical = 1.0E-4
 maxIterations = 10
 strictFitting = false [true,false]

General options...

 finalOrientation = none [none,pca]

==

 7.3.38 Edit|User

The “Edit|User” submenu (Figure 7.24) provides access to functions related to

Figure 7.24: The “Edit|User” submenu.

104

user-defined data and batch variables.

 7.3.39 Edit|User|UserVars

The “Edit|User|UserVars” submenu (Figure 7.25) provides access to functions
related to user-defined data variables.

 7.3.40 Edit|User|UserVars|Edit...
The “Edit|User|UserVars|Edit...” function is not implemented at this time.

 7.3.41 Edit|User|UserVars|Add...
The “Edit|User|UserVars|Add...” function is not implemented at this time.

 7.3.42 Edit|User|UserVars|Delete...
Command: DELETE USERVAR i OBJECT *
Command: DELETE USERVAR i OBJECT j

The “Edit|User|UserVars|Delete...” menu choice allows the user to delete an
existing user-defined data variable (specified by index) from one or all of the
currently loaded objects. Note that deleting a user-variable from a single object
may disrupt the homology of user-defined variables across all objects, or in
other cases, may correct such errors. Example output is shown below.

==
Command: DELETE USERVAR 1 OBJECT *

 Uservar 1 deleted from all objects

==
Command: DELETE USERVAR 1 OBJECT 1

 Uservar 1 deleted from object 1

Figure 7.25: The “Edit|User|UserVars” submenu.

105

==

 7.3.43 Edit|User|Defines

The “Edit|User|Defines” submenu (Figure 7.26) provides access to functions
related to user-defined program variables. Such variables are of the form
$varname$ with an associated string value. When processing command lines,
the program substitutes the value for any detected user-defined variables. This
is particularly useful in complex batch files. See the “Batch Processing” chapter
for details.

 7.3.44 Edit|User|Defines|Set...
Command: DEFINE var value

The “Edit|User|Defines|Set...” menu choice produces a dialog with an editable
command string that allows the user to define a variable and its associated
value. Variables must begin and end with '$'. If a variable of the same name
already exists, its value is changed to match that provided to the command.
When processing command lines, the program substitutes the value for any
detected user-defined variables. Example output follows.

==
Command: DEFINE $fn.in$ myInputFile.mdt

$fn.in$ = myInputFile.mdt

==

 7.3.45 Edit|User|Defines|Clear
Command: DEFINE CLEAR

The “Edit|User|Defines|Clear” menu choice issues the command to completely

Figure 7.26: The “Edit|User|Defines” submenu.

106

clear the current list of user-defined program variables. The current contents of
the list is displayed in the listing window so the user knows exactly what has
been cleared, as shown in the example output below.

==
Command: DEFINE CLEAR

Clearing list...

$fn.in$ = myInputFile.mdt
$fn.out$ = myOutputFile.mdt

Done.

==

 7.3.46 Edit|User|Measurements

The “Edit|Measurements” submenu provides access to functions for the
manipulation of measurements defined for the current data set.

 7.3.47 Edit|Measurements|Add...
Command: MEASUREMENT ADD type label i [j k]

The “Edit|Measurements|Add...” menu choice opens a dialog with an editable
command skeleton that allows/requires the user to specify the type of
measurement to be added, a label for that measurement, and the requisite
index parameters. One to three index parameters may be required depending
upon the measurement type. More information about Morpheus measurements
can be found in the “Morpheus Data Files (.mdt)” chapter. Below is an example
of adding a measurement of the angle between points 3, 5, and 10 to an
existing set of measurements.

Figure 7.27: The “Edit|Measurements” submenu.

107

==
Command: MEASUREMENT ADD angle a1 3 5 10

1. DIST "ND2C_1" 2 1
2. DIST "ND2C_2" 4 3
3. DIST "ND2C_3" 6 5
4. DIST "ND2C_4" 8 7
5. DIST "ND2C_5" 10 9
6. ANGL "a1" 10 5 3

==

 7.3.48 Edit|Measurements|Remove...
Command: MEASUREMENT REMOVE iSeq

The “Edit|Measurements|Remove...” menu choice provides for the removal of
one or more measurements (specified by an iSeq) defined for the current data
set. The program first displays a list of the measurements defined for the
current data set. The user is then presented with a dialog with an editable
skeleton of the command they can modify to specify which measurements are
to be removed from the list. Measurements are removed in descending order of
their index. Example output is shown below.

==
Command: MEA LIST

1. DIST "ND2C_1" 2 1
2. DIST "ND2C_2" 4 3
3. DIST "ND2C_3" 6 5
4. DIST "ND2C_4" 8 7
5. DIST "ND2C_5" 10 9
6. ANGL "a1" 10 5 3

==
Command: MEASUREMENT REMOVE -3

Removing measurement 3
Removing measurement 2
Removing measurement 1

==

 7.3.49 Edit|Measurements|Clear
Command: MEA CLEAR

108

The “Edit|Measurements|Clear” menu choice removes all measurements
defined for the current data set from the measurement list. Example output is
shown below.

==
Command: MEA CLEAR

Clearing all measurements...

==

 7.4 Process

The “Process” submenu (Figure 7.28) provides access to data transformation
and processing functions that are more complex than simple editing tasks.

 7.4.1 Process|Points

The “Process|Points” submenu (Figure 7.29) provides access to point-based
data transformation and processing functions such as superimposition and
missing data imputation.

Figure 7.28: The “Process” submenu.

Figure 7.29: The “Process|Points” submenu.

109

 7.4.2 Process|Points|Superimposition

The “Process|Points|Superimposition” submenu (Figure 7.30) provides access
to functions related to point-based superimpositions.

 7.4.3 Process|Points|Superimposition|OPA
Command: SUPERIMPOSITION OPA

The “Process|Points|Superimposition|OPA” menu choice executes an ordinary
Procrustes analysis (OPA) using the primary points of the currently loaded
object list and the current superimposition options (see the “Process|Points|
Superimposition|Options” submenu). As implemented, an OPA is simply a
single-iteration generalized Procrustes analysis that eschews the computation
of the grand-mean point configuration. All other coordinate-based data
associated with the objects, e.g., curves, surfaces, etc., are transformed by the
parameters estimated by the OPA. Example output is shown below.

==
Command: SUPERIMPOSITION OPA

ORDINARY PROCRUSTES ANALYSIS

Initial Procrustes statistics...
Total points = 60
Total Procrustes d2 = 410009.731777

Normalized Procrustes statistics...
Total points = 60
Total Procrustes d2 = 2.152039

Iteration 1 Procrustes statistics...
Total points = 60
Total Procrustes d2 = 0.197288

Final Procrustes statistics...

Figure 7.30: The “Process|Points|Superimposition” submenu.

110

Total points = 60
Total Procrustes d2 = 0.197288

==

 7.4.4 Process|Points|Superimposition|GPA
Command: SUPERIMPOSITION GPA

The “Process|Points|Superimposition|GPA” menu choice executes a
generalized Procrustes analysis (GPA) using the primary points of the currently
loaded object list and the current superimposition options (see the “Process|
Points|Superimposition|Options” submenu). All other coordinate-based data
associated with the objects, e.g., curves, surfaces, etc., are transformed by the
parameters estimated by the GPA. Example output is shown below.

==
Command: SUPERIMPOSITION GPA

GENERALIZED PROCRUSTES ANALYSIS

Initial Procrustes statistics...
Total points = 60
Total Procrustes d2 = 410009.731777

Normalized Procrustes statistics...
Total points = 60
Total Procrustes d2 = 2.152039

Iteration 1 Procrustes statistics...
Total points = 60
Total Procrustes d2 = 0.067980

Iteration 2 Procrustes statistics...
Total points = 60
Total Procrustes d2 = 0.067935

Final Procrustes statistics...
Total points = 60
Total Procrustes d2 = 0.067935

==

 7.4.5 Process|Points|Superimposition|RF
Resistant Fitting not yet implemented.

 7.4.6 Process|Points|Superimposition|GRF
Generalized Resistant fitting (GRF) not yet implemented.

111

 7.4.7 Process|Points|Superimposition|BSC
Command: SUPER BSC i j [k]

The “Process|Points|Superimposition|BSC” command opens a dialog with an
editable skeleton of the command for the construction of Bookstein shape
coordinates (BSC). At this time, this function is implemented for two- and
three-dimensional data only. For two-dimensional data, all objects are
transformed so that the ith point in each has coordinates 0.0,0.0, and rotated
so that the vector defined by points i and j points in the direction of the positive
x axis. Objects are scale so that the length of this segment is 1.0. For three-
dimensional data, these same operations are performed and a third point, k, is
rotated into the x,y plane. Example output is shown below.

==
Command: SUPER BSC 5 3 7

Bookstein shape-coordinate registration...

Initial SS...
Total points = 80
Total Procrustes d2 = 110937.953824

Final SS...
Total points = 80
Total Procrustes d2 = 0.451838

==

 7.4.8 Process|Points|Superimposition|Restore

The “Process|Points|Superimposition|Restore” submenu (Figure 7.31)
provides access to commands to undo the net scaling, translation, and rotation
applied to the objects in the current object list. Unlike previous versions of

Figure 7.31: “The Process|Points|Superimposition|Restore” submenu.

112

Morpheus et al., these parameters are encoded by tracking identical
transformations applied to a set of standard basis vectors generated when the
data were loaded. As such, and again unlike earlier versions, the undoing of
these transformations is independent of the order of their application. That is,
one can restore translation before or after rotation and scaling. The latter have,
in previous versions, always been order-independent.

 7.4.9 Process|Points|Superimposition|Restore|All
Command: SUPERIMPOSITION RESTORE ALL

The “Process|Points|Superimposition|Restore|All” menu choice restores the
coordinate data (primary and secondary points, curves, etc.) of all objects in
the current list to their position, size, and orientation at the time they were
read into the program. That is, using this command after a series of
transformation operations will restore the coordinate data to their original
values. The same can be achieved by the restoration of scale, rotation, and
translation terms separately. Example output is shown below.

==
Command: SUPERIMPOSITION RESTORE ALL

 Restoring...
 Scale...
 Rotation...
 Translation...

==

 7.4.10 Process|Points|Superimposition|Restore|Scale
Command: SUPERIMPOSITION RESTORE SCALE

The “Process|Points|Superimposition|Restore|Scale” menu choice restores the
coordinate data (primary and secondary points, curves, etc.) of all objects in
the current list to their original size at the time they were read into the
program. Complete restoration of the original data can be achieved by the
subsequent restoration of rotation and translation. Example output is shown
below.
==
Command: SUPERIMPOSITION RESTORE SCALE

 Restoring scale...

==

113

 7.4.11 Process|Points|Superimposition|Restore|Rotation
Command: SUPERIMPOSITION RESTORE ROTATION

The “Process|Points|Superimposition|Restore|Rotation” menu choice restores
the coordinate data (primary and secondary points, curves, etc.) of all objects
in the current list to their original orientation at the time they were read into
the program. Complete restoration of the original data can be achieved by the
subsequent restoration of scale and translation. Example output is shown
below.

==
Command: SUPERIMPOSITION RESTORE ROTATION

 Restoring rotation...

==

 7.4.12 Process|Points|Superimposition|Restore|Translation
Command: SUPERIMPOSITION RESTORE TRANSLATION

The “Process|Points|Superimposition|Restore|Translation” choice restores the
coordinate data (primary and secondary points, curves, etc.) of all objects in
the current list to their original position at the time they were read into the
program. Complete restoration of the original data can be achieved by the
subsequent restoration of rotation and scale. Example output is shown below.

==
Command: SUPERIMPOSITION RESTORE TRANSLATION

 Restoring translation...

==

 7.4.13 Process|Points|Missing data

Figure 7.32: The “Process|Points|Missing data” submenu.

114

The “Process|Points|Missing data” submenu (Figure 7.32) provides access to
functions related to the estimation (imputation) of “reasonable” coordinates for
a small number of points marked as missing and randomly distributed within
the current data set. Note that the use of these functions for data with a high-
proportion of missing data or data that is not missing at random, i.e., missing
data is associated with a particular class of objects, can produce misleading
results.

 7.4.14 Process|Points|Missing data|Impute

The “Process|Points|Missing data|Impute” submenu (Figure 7.33) provides
access to functions to estimate coordinate values for points marked as missing
in the current data set.

 7.4.15 Process|Points|Missing data|Impute|Simple mean
substitution

Command: MISSINGDATA IMPUTE SIMPLEMEANSUBSTITUTION

The “Process|Points|Missing data|Impute|Simple mean substitution” menu
choice substitutes the mean coordinate values of the same non-missing points
for those marked as missing. If all missing points are missing in all objects, an
error message is displayed. Otherwise, coordinates are imputed for missing
points based on their non-missing homologs in the rest of the objects. Note
that this simply computes the mean coordinates and uses those values. If the
data represent landmark coordinates (the data could be linear distances or
other non-geometric values) not in meaningful alignment, such estimates are
probably, themselves, meaningless. See the “Process|Points|Missing data|
Impute|GPA mean substitution” for a more useful approach. The following
example shows the output of this command pre- and succeeded by point
reports to show the results.

Figure 7.33: The “Process|Points|Missing data|Impute” submenu.

115

==
Command: LIST POINTREPORT

 Objects: 6
 Primary points total: 60
 Primary points missing: 9
 Primary points per object: 10
 1234567890
 1. 174722
 2. 174723 .*....*.*.
 3. 176225 .*....*.*.
 4. 176228
 5. 220065 ..**.....*
 6. 220326

 .=PRIMARY *=MISSING PRIMARY s=SECONDARY x=MISSING SECONDARY

==
Command: MISSINGDATA IMPUTE SIMPLEMEANSUBSTITUTION

Missing Data
Simple Mean Substitution

Obj2: points 2 7 9
Obj3: points 2 7 9
Obj5: points 3 4 10

==
Command: LIST POINTREPORT

 Objects: 6
 Primary points total: 60
 Primary points per object: 10
 1234567890
 1. 174722
 2. 174723
 3. 176225
 4. 176228
 5. 220065
 6. 220326

 .=PRIMARY *=MISSING PRIMARY s=SECONDARY x=MISSING SECONDARY

==

 7.4.16 Process|Points|Missing data|Impute|GPA mean
substitution

Command: MISSINGDATA IMPUTE GPAMEANSUBSTITUTION

The “Process|Points|Missing data|Impute|GPA mean substitution” menu

116

choice invokes a function that first performs a GPA on the current dataset to
align the objects. Grand-mean coordinate values are then computed for each
landmark using the non-missing points, and those values used as estimates for
the coordinates of points marked as missing. The inverse scale, rotation, and
translation applied during the GPA are then applied to restore the data to their
original size, location, and orientation. This is the case for previously
untransformed data. If the data has been transformed prior to using this
function, data restored to the locations, etc. they occupied when they were
loaded, i.e., the back transformation is based on the net transforms since the
data have been loaded. The following example shows the output of this
command pre- and succeeded by point reports to show the results.

==
Command: LIST POINTREPORT

 Objects: 6
 Primary points total: 60
 Primary points missing: 9
 Primary points per object: 10
 1234567890
 1. 174722
 2. 174723 .*....*.*.
 3. 176225 .*....*.*.
 4. 176228
 5. 220065 ..**.....*
 6. 220326

 .=PRIMARY *=MISSING PRIMARY s=SECONDARY x=MISSING SECONDARY

==
Command: MISSINGDATA IMPUTE GPAMEANSUBSTITUTION

GENERALIZED PROCRUSTES ANALYSIS

Initial Procrustes statistics...
Total points = 60
Total Procrustes d2 = 341973.345160

Normalized Procrustes statistics...
Total points = 60
Total Procrustes d2 = 2.355314

*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.
Iteration 1 Procrustes statistics...

Total points = 60
Total Procrustes d2 = 0.061223

*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.

117

*** Missing data detected. Fitting common subset.
Iteration 2 Procrustes statistics...

Total points = 60
Total Procrustes d2 = 0.055969

*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.
Iteration 3 Procrustes statistics...

Total points = 60
Total Procrustes d2 = 0.055149

*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.
Iteration 4 Procrustes statistics...

Total points = 60
Total Procrustes d2 = 0.054936

*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.
*** Missing data detected. Fitting common subset.
Iteration 5 Procrustes statistics...

Total points = 60
Total Procrustes d2 = 0.054870

Final Procrustes statistics...
Total points = 60
Total Procrustes d2 = 0.054870

Missing Data
Simple Mean Substitution

Obj2: points 2 7 9
Obj3: points 2 7 9
Obj5: points 3 4 10

 Restoring...
 Scale...
 Rotation...
 Translation...

==
Command: LIST POINTREPORT

 Objects: 6
 Primary points total: 60
 Primary points per object: 10
 1234567890
 1. 174722
 2. 174723
 3. 176225
 4. 176228
 5. 220065
 6. 220326

118

 .=PRIMARY *=MISSING PRIMARY s=SECONDARY x=MISSING SECONDARY

==

 7.5 Analyze
There is no “Analyze” submenu at this time. The main menu item is included to
limit the necessity of regenerating menu plots if future versions of Morpheus et
al.

 7.6 Save

The “Save” submenu (Figure 7.34) provides access to functions for saving
various type-specific quantities computed for the current data set. This does
not save the data, itself. To do that, use the “File|Save as...” function.

 7.6.1 Save|Objects

The “Save|Objects” submenu (Figure 7.36) provides access to commands that
save various object and object-list quantities to a file.

 7.6.2 Save|Objects|Grand mean...
Command: OBJECTS SAVE MEANS GRAND filename

Figure 7.34: The “Save” submenu.

Figure 7.35: The “Save|Objects” submenu.

119

The “Save|Objects|Grand mean...” opens a file-save dialog that allows the user
to specify the name of a file to which the grand mean of the current object list
will be saved in the current Morpheus format.

 7.6.3 Save|Objects|Group means...
Command: OBJECTS SAVE MEANS GROUP filename

The “Save|Objects|Group means...” menu choice opens a file-save dialog that
allows the user to specify the name of a file to which the group means of the
current object list will be saved in the current Morpheus format. Group
association and labels are also saved so that group means will be identified and
plotted distinctly when the data are reloaded.

 7.6.4 Save|Objects|Transformation parameters...
The “Save|Objects|Transformation parameters...” is not implemented in this
version of Morpheus et al.

 7.6.5 Save|Points

The “Save|Points” submenu Figure 7.36) provides access to functions related
to saving various point-related values to user-specified files.

 7.6.6 Save|Points|Centroid Size
Command: SAVECENTROIDSIZE filename

The “Save|Points|Centroid Size” menu choice presents a file-save dialog
allowing the user to choose the file to which the centroid sizes of the currently
loaded objects will be written. These values were calculated when the data were
loaded, and any object with missing data for any of the primary points will have
its centroid size reported as NA (Not Available). Grouping data is not saved in
this version. Example output is shown below.

Figure 7.36: The “Save|Points” submenu.

120

==
Command: SAVECENTROIDSIZE cs.RData

Ready to write R file...

 Centroid sizes for 6 object(s) written to "cs.RData" in
"/Users/myaccount/data"
==

The following are the contents of the R-formatted file generated by the above
command.

Centroid sizes from /Users/myaccount/data/scapulae.mdt
Jan 19, 2013 4:42:43 AM

Sample data from:
Taylor, A. B. and D. E. Slice
2005
A Geometric Morphometric Assessment of the Relationship
between Scapular Variation and Locomotion in African Apes
Pages 299-318 IN
Slice, D. E. (Ed.)
Modern Morphometrics in Physical Anthropology
Kluwer Academic/Plenum Press
REM Three male Gorilla gorilla gorilla
Three male Pan troglodytes.
REM Images contrast enhanced.
REM Notice images carry scale factors from tpsDig.
*File format version no.
*Point 1 made missing for object 3
*File format version no.

CENTROID_SIZE
"174722" 329.315534
"174723" 313.577934
"176225" NA
"176228" 226.825204
"220065" 211.392596
"220326" 222.377599

 7.6.7 Save|Points|Analysis

121

The “Save|Points|Analysis” submenu (Figure 7.37) currently contains no
items. It is included as a placeholder for future functions.

 7.6.8 Save|User

The “Save|User” submenu (Figure 7.38) currently contains no items. It is
included as a placeholder for future functions.

 7.6.9 Save|Measurements...
Command: MEA SAVE filename

The “Save|Measurements...” choice opens a file-save dialog allowing the user to
specify the location and name of the file to which to output the current
measurement values. The values are saved in R format and can be read directly
into R with the “read.table()” command. The first row of the file contains the
labels for the columns of data. Subsequent rows begin with a number
indicating the object followed by the object's label and the computed values for
each measurement. An example follows.

==
Command: MEA SAVE mea.RData

Measurements saved to /Users/myaccount/data/mea.RData

==

Figure 7.37: The “Save|Points|Analysis” submenu.

Figure 7.38: The “Save|User” submenu.

122

The contents of one such output file is shown below for a data set that had two
distances, D1 and D2, and one angle, A1, defined. The first variable is the
object label. Note that the group index and label are also included if the data
have been grouped. Also, the second specimen had missing data for a
landmark necessary to compute the D1 and A1 measurements. Its values are
thus marked as NA – the R reserved word for “Not Available”.

Object GroupI GroupLabel "D1" "D2" "A1"
1 "174722" 1 Gorilla 123.757428 113.210279 0.150284
2 "174723" 1 Gorilla NA 92.041595 NA
3 "176225" 1 Gorilla 130.940010 127.380697 0.397258
4 "176228" 2 Pan 84.261020 53.148582 0.395460
5 "220065" 2 Pan 73.889144 63.434751 0.412419
6 "220326" 2 Pan 87.256977 58.968477 0.388476

 7.7 System

The “System” submenu (Figure 7.39) provides access to submenus and options
related to the program desktop appearance, text output, and other program-
wide parameters. Some parameters related to desktop appearance are stored in
the Morpheus configuration file.

 7.7.1 System|Stop graphics update
The “System|Stop graphics update” toggle, when checked, turns off the
automatic updating of plots by the program. Refreshing plots can be very time
consuming when dealing with large data sets such as those including surface
meshes. In fact, refreshing can be the most time consuming aspect of a given
computation. After the computations have completed, unchecking this toggle
will force the graphics to refresh and automatic refreshing by the program will
resume.

 7.7.2 System|Desktop

Figure 7.39: The “System” submenu.

123

The “System|Desktop” submenu (Figure 7.40) provides access to options that
affect the appearance of the main program window.

 7.7.3 System|Deskptop|Size...
The “System|Desktop|Size...” menu choice presents the user with a dialog in
which they can specify the exact dimensions of the program window. This is
most useful for, say, preparing graphics and figures of consistent size and
resolution for publication. All menu figures in this manual, for instance, used a
program desktop width of 1024 pixels. Figure 7.41 shows the “System|
Desktop|Size...” dialog.

Figure 7.41: The “System|Desktop|Size...” dialog.

 7.7.4 System|Desktop|Defaults
The “System|Desktop|Defaults” menu choice resizes the main program
window to the default size computed at startup.

 7.7.5 System|Parameters

Figure 7.40: The “System|Desktop” submenu.

124

The “System|Parameters” submenu (Figure 7.42) provides a submenu with
choices to list or set current, general program parameter values. Other
parameters are available for individual functions, e.g, superimposition
operations.

 7.7.6 System|Parameters|List
Command: LIST SYSTEM

The “System|Parameters|List” menu choice outputs a list of currently
accessible program parameter values and their current values as shown below:

==
Command: LIST SYSTEM

 DECIMALPLACES: 6
 FIELDWIDTH: 11
 MISSINGVALUE: null
 FILEMODE: ASK

==

 7.7.7 System|Desktop|Parameters|Set...
Command: SET what value

The “System|Desktop|Parameter|Set...” menu choice outputs a list of program
parameters to the listing pane and presents the user with a dialog containing
an editable skeleton of the parameter-setting command. This command is of
the form “SET what value”. The user edits the “what” term to indicate what is
to be set – the listing provides guidance on this, and the “what” should be the
exact name of the parameter to be set. The “value” term is edited to reflect the
desired value. Current parameters and possible values are:

DECIMALPLACES – an integer value indicating the number of decimal places to
use for real-valued, numeric output.

Figure 7.42: The “System|Parameters” submenu.

125

FIELDWIDTH – an integer value indicating the number of characters to use,
when possible, for numeric output.

MISSINGVALUE – the current text string used to indicate missing data in
morpheus data files. This parameter is not set initially (value=null) so that no
data values are interpreted as indicating missing data.

FILEMODE – the parameter indicating what the program should do when
asked to save data to an existing file. The choices are ASK, OVERWRITE, and
APPEND.

 7.7.8 System|Listing font

The “System|Listing Font” submenu (Figure 7.43) provides functions that allow
the user to select the font size used for program output to the listing window.

 7.7.9 System|Desktop|Listing Font|Default
The “System|Desktop|Listing Font|Default” menu choice returns the listing
font to its default size.

 7.7.10 System|Desktop|Listing Font|Set...
The “System|Desktop|Listing Font|Set...” menu choice presents a dialog box
allowing the user to enter a point size for output text displayed in the listing
window. The current value is presented as a starting point.

 7.8 Help

Figure 7.43: The “System|Listing font” submenu.

126

The “Help” submenu (Figure 7.44) provides menu choices to access information
about the program and detected operating environment.

 7.8.1 Help|About
As shown in Figure 7.45 below, the “Help|About” menu choice produces an
information dialog showing program titling, primary authorship, revision, and
Java environment and detected operating system, and additional programming
credits.

Figure 7.45: The “Help|About” dialog showing program revision, language and
OS information, and additional programming credits.

 7.9 Unix-like Commands
Several Unix-like command-line commands are provided. Currently, there is no
menu access available for these command as their utility is most found while
working directly with the command line.

Figure 7.44: The “Help ”submenu.

127

 7.9.1 ls
Command: LS filename

The file listing command, LS, outputs the names of the contents (files and
directories) in the current, working directory to the listing window. Basic
wildcards such as '*' and '?' are supported. The following shows a simple
example.

N.B. Wildcards appear not to work. This has been added to the TODO list for a
future version.

==
Command: LS *.mdt

/Users/myaccount/data/3d
.DS_Store
mandible.mdt
mandible.obj
mea3d.mdt
surfaces_with_points.mdt
williams.mdt

==

 7.9.2 pwd
Command: PWD

The print working directory command, PWD, outputs the current working
directory to the listing window. The current, working directory is the last
directory from which a data file was read or written by Morpheus. An example
is shown below.

==
Command: PWD

/Users/myaccount/data
==

 7.9.3 cls
Command: CLS

For clear screen command, CLS, clears the Morpheus listing window.

128

129

 8 The Configuration File
The configuration file contains select startup options for the program. This file
is saved to the user's home directory and is clearly named
“morpheus.configuration” (I dislike programs that hide their configuration
files). Current options are saved to this file whenever the program is terminated
by either selecting the “File|Exit” command from the menu or using the “exit”
command-line command. Data are not saved when the program is terminated
by termination command-key for your system, e.g., under OS X, the Cmd-Q
combination.

The listing below shows an example of the contents of the configuration file. It
contains information on the default working directory, the font size for the
listing window, and the last split-pane divider relative location.

LASTDIR "/Users/xxx_your_account_name_xxx/morpheus/data/batch"
FONTSIZE 12
SPLITPANEDIVIDERLOCATION 0.30885416666666665

130

131

 9 Batch Processing
Morpheus et al. supports batch-mode operation to facilitate frequent, complex,
or highly repetitive data processing. This mode is invoked by selecting the
“File|Batch...” menu choice and selecting a Morpheus batch file. Morpheus
batch files use a default extension of “.btc”, but this is not a strict requirement.

Morpheus batch files are ASCII text files containing commands one would
otherwise type on the Morpheus command line to invoke program functions.
This user's guide or running commands from the menu system will provide the
user with the required syntax for all commands. Some commands unique to
batch processing are provided. Nested, but not circular, batch calls are
allowed. In addition, Morpheus provides support for user-defined variables.

The general design goal of Morpheus is to provide basic functions not subject
to arbitrary restrictions. These functions can then be combined by
knowledgeable users into far more complex analyses than could be hard-coded
into the program. Batch files advance this philosophy. An example of using
batch processing to carry out complex and redundant tasks is presented in the
“More Complex Examples” chapter of this manual.

 9.1 Batch-specific commands
Not really batch-specific, but these commands are generally most useful within
batch files.

 9.1.1 stop
Command: STOP

The STOP command terminates batch processing. This is most useful when
debugging long, complex batch files. A STOP command can be inserted after a
problematic line of code and the rest of the commands in the file will not be
processed.

 9.1.2 time
Command: TIME START|STOP|CHECK|NOW

The TIME command controls a time keeper that can be used to provide reports
on the elapsed time of program operations. The START and STOP parameters
initialize and terminate the timer. CHECK reports the start and current elapsed
time. NOW prints the current time to the screen. The following shows the
output of TIME command and each of its options.

132

==
Command: TIME NOW

Current time: Feb 16, 2013 4:33:54 AM

==
Command: TIME START

TimeKeeper started: Feb 16, 2013 4:33:56 AM

==
Command: TIME CHECK

TimeKeeper started: Feb 16, 2013 4:33:56 AM
 Elapsed time: 2s (=2s)

==
Command: TIME STOP

TimeKeeper started: Feb 16, 2013 4:33:56 AM
TimeKeeper stopped: Feb 16, 2013 4:34:01 AM
 Elapsed time: 4s (=4s)

==

133

 10 Morpheus Data Files (.mdt)
The native, default format of newer versions of the program is a slightly
extended version of that used by the old Morpheus et al. The format was
developed to be flexible, extensible, and human-readable. The “object”
represents the level of the individual specimen, and data or parameters
provided outside of an object specification, such as links or measurements, are
associated with all objects in the data set. In general, the ordering of complete
units of data, such as complete point specifications, curves, etc., is irrelevant
within an object (though in practice, it must be consistent throughout the data
set), as are spacing, line breaks (with some exceptions), etc. The basic
structure of the data specification is that of a tag followed by a label followed by
information appropriate to that data type. Files must be ASCII text files – not
Word or OpenOffice document files.

Note, the Morpheus format is very easy to read, but rather difficult to
construct. It is often convenient to get data into Morpheus by initially
importing it from a simpler format. The author often uses the NTSYS format
described later for this purpose.

The following is an example of a two-dimensional Morpheus data set. It is a
rather confused jumble since it was designed to test I/O robusticity. “...snip...”
indicates lines deleted to save space. Details are discussed below:

REM *1 2-dimensional object loaded from f:\m\data\one.mdt.
REM *DATE: 1996-06-23 TIME: 14.47.27

DIM 2
MISSING -999

REM Sample data file for testing morpheus data structure input

OBJ "FIGURE 517"
 USERCHAR "sex" M
 P "First point" 94.740 922.490
 USERTEXT "Source" CMNH
 USERTEXT "Source" "Carnegie Museum of Natural History"
 P "Second point" 531.580 1211.240
 P "" 855.260 1456.560
 P "" 836.840 1275.130
 REM next val P "" 1050.00 1086.03
 USERINT "Number of eyes" 2
 P "test missing" -999 -999
...snip...
 P "" 1936.840 567.290
 USERDBL "" 128.340
 P "" 136.840 746.170

134

...snip...
 P "" 518.420 329.640
 P "Twenty-fifth point" 965.790 447.190
 P2 "First secondary point" 510.530 454.860
 SP "" 518.420 329.640
 CURVE "Outline"
 476.320 1185.690
...snip...
 92.110 917.380
 C2 "Pupil"
 321.050 965.930
...snip...
 286.840 978.710

 C "Dorsal fin"
 542.110 1193.360
...snip...
 1050.000 1093.700
ENDOBJ

REM – the “REM” tag indicates that the rest of the line is a remark. Remarks
outside of an object specification are stored globally, while those within an
object specification are associated with that object. Notice that remarks can be
scattered throughout the data set, though in this version all global remarks are
placed at the beginning of the file or at the beginning of the object specification
when data are saved.

VERSION – the “VERSION” tag was introduced with the first public release of
this program. It was necessitated, initially, by changes in how image data were
specified. In the original version of Morpheus et al. (VERSION 1 format, if you
will), images were specified by the “TIFF”, “BMP”, “UNSUPPORTED”, and
“IMAGE PARMS” tags (see below). The latter encoded the location, scale, and
rotation to be applied to all images associated with the object. With the Java
version of the program, the transformation parameters were incorporated into
the single “IMAGE” tag (VERSION 2), with the program sorting out what kind of
images it could display. The program could automatically detect which format
was being used and adapt accordingly.

Encoding location, scale, and rotation as separate vector, scalar, and matrix
values was eventually deemed too cumbersome. Restoration of data was order
dependent and actually worked only for a single application of a
superimposition method. The encoding scheme, both within the program and
in the data-file format, was subsequently changed to that of a set of
coordinates of transformed basis vectors. From these transformed coordinates,
the location, scale, and rotational information can be computed, and
restoration of the data can proceed independently of the order or number of
transformations that have been applied. However, the program needs to be told
which method of parameter encoding is being used. Hence, the introduction of

135

the “VERSION” tag starting with version 3, e.g. “VERSION 3”. This will also
allow subtle adjustments to the file format in the future.

It is recommended that the “VERSION” tag be placed in the data file either
before or after any initial comments. This is the convention now used by the
program for saving morpheus-formatted data.

DIM – the “DIM” specification is optional for two-dimensional data. Otherwise,
it is required to specify the dimensionality of the data to follow. Any non-zero
integer following the tag is acceptable.

MISSING – if the data have missing values encoded in them, the “MISSING” tag
can be used to specify the value indicating that data is missing. This can be
either a number, integer, or string (e.g., a dot, '.'). Morpheus first tries to
convert the value into a number. If that succeeds, subsequent attempts to read
in data that could be missing are compared numerically to the missing value. If
the specified missing value cannot be converted to a numerical value, a string
comparison is made between data tokens read in by the program and the
missing value. In either case, if match is found, the particular data being read
in is marked as missing. Examples of frequently used values include “999”, “-
999”, '.'

OBJ – the “OBJ” tag marks the beginning of data for a new specimen or object.
It must be followed by an object label. Labels with spaces can be specified in
quotes, and blank labels in quotes are acceptable. Between an “OBJ” tag and
the “ENDOBJ” or the next “OBJ” tag are the data for that object.

POINT, P – the fundamental data type in current geometric morphometric
analysis is the location of an anatomical point, or landmark, specified by its
Cartesian coordinates. Morpheus recognizes two types of points – primary and
secondary. Primary points are the ones used in point-related parameter
computations such as those of generalized Procrustes analysis, etc. Secondary
points are merely carried along by any transformations and can be used to
isolate an analysis to a specific subset of points or simply for visualization. The
“POINT” or “P” tag indicates a primary point. It must be followed by a label,
such as “bregma”, but a blank label can be specified by empty quotes. This is
followed by the number of numerical values specified by the dimensionality of
the data. Labels and/or coordinates must be in order, but need not occupy the
same line.

P2, SP – secondary points are indicated by either the tags “P2” or “SP”. As
described under the “P” tag definition, secondary points are carried along with
data transformations, but are not used in the computation of transformation
parameters or subsequent statistical analysis. In the original Morpheus,
primary and secondary points were two different types of data. Now, “primary”
and “secondary” are treated as attributes of individual points.

136

CURVE, C – besides points, Morpheus also supports the specification of curves
in n-dimensions. These are indicated by either the “CURVE” or “C” tag followed
by a label. These are then followed by an arbitrary number of sets of point
coordinates that describe the curve. The end of the curve is indicated when the
next tag or end-of-file is found. As with points, both primary and secondary
curves are supported. Their distinct usage at this point remains a mystery even
to the development team.

C2, SC – the “C2” and “SC” tags indicate specification of a secondary curve.
The formatting is otherwise the same as for primary curves.

USERCHAR, USERTEXT, USERINT, USERDBL – a variety of data types are
provided to record non-coordinate user data such as sex, museum, size, etc.
For each variable, one of these tags must be provided and followed by a label.
Again, blank labels can be indicated by empty quotation marks. The label is
then followed by appropriate data. “USERCHAR” is used for data consisting of a
single character code, e.g., USERCHAR “sex” m. “USERTEXT” is used for more
lengthy text descriptors, e.g., USERTEXT “location” south_america or
USERTEXT “location” “south america”. “USERINT” types can hold integer
values, e.g., USERINT “bristle number” 7. And “USERDBL” can be used to
record real-valued variables (sorry, the tag derives from the use of 'double' in
programming terms to indicate double-precision real numbers), e.g., USERDBL
“mass” 260.5.

ENDOBJ – this is an optional tag included for neatness and indicates the end
of the data specification for an object. The program will actually recognize the
end of an object specification when it finds another “OBJ” tag or end-of-file
marker.

TIFF, BMP, UNSUPPORTED, IMAGEPARMS – (NOTE: this form of image
specification is still supported, but should not be used) “TIFF”, “BMP”, and
“UNSUPPORTED” were tags used in the old Morpheus to identify images
associated with an object. The old Morpheus was capable of displaying TIFF
and BMP images, and in UNSUPPORTED cases would save the image filename
to keep it associated with the object. For consistency, these tags must be
followed by a label, even a blank one, and then by the name of the image file
with quotes included as needed to allow for spaces in the path or filename. If a
complete path is not included, the images are assumed to be relative to the
current directory. IMAGEPARMS is a tag for providing scale, translation, and
rotation information (as an angle) for 2D images. These parameters would be
associated with all images in an object and provided the necessary information
to transform images along with points as they were, say, subjected to GPA. In
fact, the original Morpheus was never able to rotate the images, but would
apply the scaling and translation parameters to provide some approximation to
the actual transform (the newer Morpheus versions do apply all of the
transforms). Below is an example of an object with a BMP image and an image

137

transformation (the IMAGEPARMS don't affect any real transformation of the
image in this case):

OBJ ""
 BMP "" canadn0e.bmp
 IMAGEPARMS 1.0 0.0 0.0 0.0
ENDOBJ

IMAGE – (pre-VERSION 3 format) the “IMAGE” tag is the new method for
specifying images in a Morpheus data file. It requires that the transformation
parameters be provided with the image and does not require the specification of
the image format. After the initial tag, a label is required. This is followed by
real numbers indicating a DIM-dimensional translation vector, scaling
parameter, and a DIMxDIM transformation (assumed to be rigid-rotation)
matrix. Then comes the name of the image file in quotes. Below is an example:

OBJ "Obj1"
IMAGE ""
 0.000 0.000
 1.000
 1.000 0.000
 0.000 1.000
 "15-50.jpg"
ENDOBJ

IMAGE – (VERSION 3 format) the “IMAGE” tag is the new method for specifying
images in a Morpheus data file. It requires that the transformation parameters
be encoded in a set of transformed basis vectors. After the initial tag, a label is
required. This is followed by real numbers indicating a (DIM+1) set of DIM-
dimensional coordinates of (possibly transformed) standard basis vectors. Then
comes the name of the image file in quotes. Below is an examples:

REM *File format version no.
VERSION 3
DIM 2

OBJ "174722"
IMAGE ""
 0.000000 0.000000
 1.000000 0.000000
 0.000000 1.000000
 "test-image.JPG"
P "" 240.967000 73.184000
...

138

ENDOBJ

SURFACE, SURF – the “SURFACE” or “SURF” tag indicates the specification of
an surface file. Logically, this could be considered a three-dimensional image
file, but such data required a bit too much specialized programming to be
easily incorporated under the IMAGE tag for now. Like the IMAGE tag, the
SURF tag requires a label, then translation, scale, and rotation/transformation
matrix specification. Wavefront .obj and .ply (polygon) files are supported at
this time (see description under “Surface Formats” below),. The following are
examples of the use of the SURF tag in both the VERSION 3 and pre-VERSION
3 formats:

VERSION 3...
VERSION 3
DIM 3
OBJ "mandible"
SURF ""
 0.0 0.0 0.0
 1.0 0.0 0.0
 0.0 1.0 0.0
 0.0 0.0 1.0
 "mandible.obj"
ENDOBJ

REM *File format version no.
VERSION 3
DIM 3

OBJ "mandible"
SURF ""
 0.127366 0.049117 0.014852
 0.131988 0.049117 0.014852
 0.127366 0.053739 0.014852
 0.127366 0.049117 0.019474
 "mandible.obj"
P "" -0.004051 -0.029724 0.036688
...
ENDOBJ

Pre-VERSION 3...
DIM 3
OBJ "mandible"
SURF ""
 0.0 0.0 0.0

139

 1.0
 1.0 0.0 0.0
 0.0 1.0 0.0
 0.0 0.0 1.0
 "mandible.obj"
ENDOBJ

LINK, POLY – The “LINK” and “POLY” tags are global specifications for
visualization enhancements to be used when rendering landmark data. The
LINKs are simply lines (2D) or tubes (3D) connecting two landmarks. POLYs are
triangles formed by three landmarks and rendered as planar surfaces. The
specifications of LINKs and POLYs usually come somewhere near the beginning
of the file and the syntax consists of the tag followed by two (LINKs) or three
(POLYs) integers indicating the indices of the landmarks to be used to define
the structure, e.g., LINK 3 6 or POLY 3 5 32. Note, the order of the POLY
landmarks matters in that the side of the triangle in which their order is
counterclockwise is considered the “front” while the other is considered the
“back” for purposes of rendering. Labels are not used for either tag. Figure 10-1
shows examples of each.

Figure 10-1: Links (left) and polygons (right) used to enhance visualization.
Macaque facial landmark data from Paul O'Higgins.

140

DIST, ANGL, TRIAREA, ARCL, PERI, AREA – These tags specify
measurements to be made on all objects. Like LINKs and POLYs, these are
global specifications and are usually found near the top of the file. After each
tag is a label that is followed by the appropriate number of integers specifying
the landmarks or curves to be used in the computation. Examples of each
follow. Comments in parentheses would not be included in an actual data file:

DIST “head_length” 1 7 (distance between points one and seven)
ANGL “face_angle” 3 9 17 (angle at point nine formed with points
three and seventeen)
TRIAREA “facial_area” 3 9 17 (area of the triangle formed by
points three, nine, and seventeen)
ARCL “brow arc” 3 (arclength of curve number three)
PERI “skull perimeter” 1 (perimeter of curve one – arclength
plus distance from first and last point)
AREA “orbital area” 2 (area of curve two – two dimensional data
only)

CMD – the “CMD” tag indicates a line containing an embedded Morpheus
command that should be applied to the data after loading. Currently, two
commands are supported - “GROUP” and “LABEL”. The GROUP command
groups the data, while the LABEL command applies labels to the groups. See
the “Commands” chapter for details, but simple examples of each are: “GROUP
52 45” that groups the data such that the first fifty-two objects are in group
one, the next forty-five are in group two, and any remaining objects are in
group three, and “LABEL male female juvenile”, which would relabel the three
groups from the previous command “male”, “female”, and “juvenile”. Default
group labels are of the form “gi:j” where “i” is the group number and “j” is the
group size. An embedded LABEL command must appear after an embedded
GROUP command. For instance:

CMD GROUP 52 45
CMD LABEL male female juvenile

141

 11 Other Morpheus Formats
Morpheus supports one or more other formats to associate different types of
data with the specimens in a Morpheus data file. These are described below.

 11.1 Morpheus grouping files (.grp)
Besides grouping specimens by count, one can also group them by a list of tags
provided in a Morpheus grouping file. Count grouping, of course, requires all
group members be contiguously arranged within the file. Grouping files allow
alternative groupings. The format of the file is rather simple. There may be any
number of comment lines, indicated by “REM” tags, scattered throughout the
file. Non-blank, non-remark lines that contain text are treated as group labels.
The text may be integers, real numbers, characters, or strings. All such data
are read as strings, and the number of unique strings in such a file determines
the number of groups. Each individual, in order, is assigned to the group
indicated by the grouping string. Note, there must be exactly as many non-
blank, non-comment lines in the grouping file as the number of objects being
grouped. The “.grp” suffix is used for convenience, but is not required. Below is
part of a grouping file:

REM grouping for 10 individuals.
REM 3 groups
REM male
m
m
REM female
f
m
f
f
f
REM juvenile
3
m
3

This file can be used to group ten objects as “m” for male, “f” for female, and
“3” for juvenile. The mix of characters and integers is meant to show the
flexibility of the grouping system and emphasize that numbers are treated as
strings for purposes of identifying groups and associating objects.

142

143

 12 Other Supported Data Formats

 12.1 Integrate (.lnd)
Support for the Integrate format was developed as part of a consulting project
to read in a specific set of data files. Perhaps it could be useful to others. The
files are ASCII text with the following structure (ellipses “...” indicated lines
deleted to save space):

SUBJECT_ID = Unnamed
SCAN_TYPE = NO TYPE
STUDY_NAME = * * * NO STUDY * * *
LAND_STUDY = New Study
STD_LAND = 42
AUX_LAND = 6
STANDARD =
 1 259 212 78.59 -78.54 148.40 -2.90
...
42 -999 -999 0.00 0.00 0.00 0.00
AUX =
 1 -999 -999 0.00 0.00 0.00 0.00 top_head
...
 6 161 85 144.22 -56.83 59.50 132.56 chin
END =

The import routine was developed from looking at a series of these files, so it
simply imports the initial tokens on the first four lines as named USERTEXT
variables. The rest of the line after the '=' is read in as the value. The number of
standard landmarks, n, is then read in and then the number of auxiliary
landmarks, m. The next line is skipped, and n standard lines are read. The first
token on each line is used as the point label, the next three are skipped, and
the final three read in as x, y, and z coordinates. The next line is skipped, and
M auxiliary landmarks are read in. Here, the first four tokens are skipped and
the rest of the line after the z coordinate is read in as a point label, e.g.,
“top_head” and “chin” above.

It is assumed that “-999” indicates missing values. Standard points are flagged
as “primary” points, and auxiliary points are flagged as “secondary”.

I am not sure how common this format is, but if you have some Integrate files
with standard and auxiliary landmarks, this should read them in. If you have a
variation on this that you would like to see supported, feel free to contact the
Morpheus development team.

144

 12.2 Morphologika (.txt)
Morphologika (see https://sites.google.com/site/hymsfme/resources) is the
morphometrics program developed by Paul O'Higgins and Nicholas Jones5. It
supported 3D data and has embedded PCA analysis with scatter plots and
visualization of associated morphologies. Below is the provided 3D example
data file used to develop support in Morpheus. “...snip...” indicates data deleted
to save space. Changes to support 2D data are obvious:

[individuals]
15
[landmarks]
31
[Dimensions]
3
[names]
Specimen 1
...snip...
Specimen 15
[labels]
Sex
[labelvalues]
Female
...snip...
Male
Female
[rawpoints]
'#1
16.01 24.17 11.18
...snip...
17.48 27.52 13.71
...snip...
'#15
22.44 25.44 10.9
...snip...
23.63 29.14 13.63
[wireframe]
1 4
...snip...
15 31
[polygons]
8 6 7
...snip...
18 30 17

5 Morphologika is reportedly no longer developed or maintained. The user is,
instead, directed to EVAN toolkit – http://www.evan-society.org/.

http://www.york.ac.uk/res/fme/resources/software.htm

145

Morphologika tags are contained in square brackets and followed by relevant
data. The first three of these indicate the number of individuals and landmarks
in the file and the dimensionality of the coordinate data. Next, come the names
for each specimen and a label for one or more user-supplied variables. This is
followed by the values of the labeled variables. These values must match the
variable names and number of individuals previously specified. After the label
values are the raw coordinates for each landmark in each individual. The lines
beginning with a single quote in the rawpoints section are interpreted by
Morpheus as object-level remarks. Wireframes are Morphologika's equivalent of
Morpheus links, and that tag is followed by an arbitrary number of integer
pairs specifying the numbers of the landmarks to be linked. Similarly, polygons
are triplets of points that define triangles used to help visualize three-
dimensional structures. See the Morphologika documentation for more detail.

 12.3 R (.Rdata)
The R format is used to export data (group label and indices, user variables,
and primary point coordinates) into an ASCII text file that can be read directly
into the R program with the “read.table('filename')” command. Column labels
are provided on the first row, then the coordinate or other data. Coordinates for
each primary point are provided on a single row for each object, and this row
begins with a row label. When R attempts to read the file, it will recognize the
first line has one less column that the next and interpret this as indicating the
first row contains column-label information. An example follows where
“...snip...” indicates data excised to save space:

"P1.1" "P1.2" "P1.3" ...snip... "P8.1" "P8.2" "P8.3"
"Obj1" 1.000 1.000 1.000 ...snip... 1.000 -1.000
-1.000
"Obj2" 1.000 1.000 1.000 ...snip... 1.000 -1.000
-1.000
...snip...
"Obj9" 0.410 0.410 0.410 ...snip... 0.410 -0.410
-0.410

If the points have associated labels, these are used to generate the column
labels. Otherwise, “Pi” is used, where i indicates the point number. Appended
to these are the dimension number, e.g., “.1”, “.2”, etc. Object labels are used
as row labels if they exist. Otherwise, row labels are generated as “Objj”, where
j indicates the object number. The above example is for nine, three dimensional
objects (cubes) with eight landmarks.

This format is also used for other exported information such as measurement
values. These can be read in and merged with coordinate or other compatible

146

files as needed.

 12.4 Raw (.raw)
This is the simplest output format. Currently, exporting to a .raw format
produces an ASCII text file with one specimen per row containing the
coordinates of each primary point for that specimen. Such a file should be
importable into almost any other package with minimal modification. The data
for the cubes above would thus appear as:

1.000 1.000 1.000 ...snip... 1.000 -1.000 -1.000
1.000 1.000 1.000 ...snip... 1.000 -1.000 -1.000
...snip...
0.410 0.410 0.410 ...snip... 0.410 -0.410 -0.410

 12.5 TPS (.tps)
This is the format of Jim Rohlf's popular suite of tps programs. These programs
can be used for data acquisition, thin-plate spline visualization, image
superimposition, shape regression, partial least squares analysis, interpolation
of morphology into phylogenetic trees, and a host of other functions. These
programs generally support 2D data and associated images and can be
downloaded from:

http://life.bio.sunysb.edu/morph

A tps file must be ASCII text and may contain data for multiple specimens. The
data for each specimen begins with a specification of the number of landmarks
for that individual via the “LM=p” line. “LM” stands for “Landmarks” and p is
the number of points for this specimen. This line is followed by pairs of real
numbers that are the 2D coordinates of the p landmarks. Subsequent lines up
to the next “LM=” line or the end of the file may contain any number of
keywords and associated data. Supported keywords include: COMMENT, ID,
SCALE, VARIABLES, CURVES, OUTLINES, POINTS, CHAIN, RADIIXY, RADII,
and IMAGE. Each of these is illustrated in the following sample (“...snip...”
indicates data excised to save space):

LM=0
CURVES=3
POINTS=4
185.00000 474.00000
183.00000 184.00000
219.00000 184.00000
218.00000 475.00000
POINTS=4
102.00000 253.00000

http://life.bio.sunysb.edu/morph

147

103.00000 186.00000
...snip...
POINTS=8
138.00000 152.00000
106.00000 142.00000
...snip...
OUTLINES=4
POINTS=404
84 442
85 442
86 442
...snip...
CHAIN=612
87 352
7777707765444445444454445444454444544007000070000700070000700007
765445555554
...snip...
RADIIXY=354
17 206
16 206
16 206
...snip...
RADII=240
49 92 75.029 58.249
 42.622 42.464 42.353 42.288 42.271 42.271 42.302 41.628 41.731
41.881 42.078 42.322 42.322 42.086 42.086 41.967 41.967 42.401
41.968 42.472
...snip...
IMAGE=tpscurves2.jpg
COMMENT=whatever whatever
ID=1
VARIABLES=OrigNum=2,a=the value of a,b=33,c=3.14, d=
SCALE=0.3472
LM=0
IMAGE=tpscurves.jpg
ID=0
VARIABLES=OrigNum=1,d=,a=a different value of a, b=69, c=1.59

Within the context of the tps programs, the user need seldom concern
themselves with the details of the format. However, more details about the
format can be found in the tps documentation files.

When importing these data into Morpheus, objects are loaded with their
associated data. Curves and Outlines, which are distinct data types in the tps
series, are loaded in as Morpheus curves, the Variable parameters are parsed
into individual variables and saved as either USERINT, USERDBL, or
USERTEXT variables. If a scale is provided all coordinate data are transformed
by that scale factor after loading. The ID is stored as the object label.

When exporting Morpheus data to tps format, landmarks (LM) are saved first

148

(as required). Then, if the object has a single COMMENT, that is saved “as is”.
If it has no comments, a comment is saved indicating the source of the data as
coming from a Morpheus export operation along with the time. If there are
multiple comments associated with an object, the same export comment is
generated and a note attached indicating the loss of comments. The Morpheus
object label is saved next as the ID.

Only one image per object is allowed for exporting. If there is a scale factor <>
1.0 associated with an image, the inverse of that scale is saved as a SCALE
keyword and applied to the coordinate data prior to saving.

Any Morpheus user variables are concatenated into a single tps VARIABLES
line and saved. All CURVES are then saved in the tps POINTS format. Finally,
the IMAGE info is saved. Be careful! Transformations associated with the image
other than scaling will be lost.

 12.6 NTSYSpc (.nts)
NTSYSpc is the popular multivariate analysis program developed by F. James
Rohlf. It was originally developed as a Numerical Taxonomy SYStem, but
provides many generally useful multivariate tools. The simple format used to
specify matrices also makes it an easy-to-use vehicle for getting data into
Morpheus, which can then export the data to a number of other formats.
Currently, the Morpheus programs support the import of user variables and
primary point coordinates in the NTSYSpc format. The user is able to specify
which columns are to be used as user variables, while the rest are assumed to
be coordinates. The basic file structure consists of some optional comments
followed by a header line describing the dimensionality of the matrix and, then,
the coordinate data, itself. Below is an example of an NTSYS file containing
coordinates of the four vertices of three squares:

" Coordinate data for three squares.
" Each has four vertices.
1 3L 8L 0
one two three
x1 y1 x2 y2 x3 y3 x4 y4
-0.2 -0.2 0.8 -0.2 0.8 0.8 -0.2 0.8
 0.1 0.0 1.1 0.0 1.1 1.0 0.1 1.0
0.0-0.3 1.0 -0.3 1.0 0.7 0.0 0.7

The first two lines above are comments as indicated by the leading quotation
mark. The third line is the header describing the matrix. The '1' indicates it is
an NTSYS rectangular matrix. The “3L” indicates the matrix has three rows
(assumed by Morpheus to be the objects). The “L” means labels for each row
will be provided. The “8L” means there are eight columns in the matrix. The

149

columns represent the two coordinates for each of four landmarks – 2x4=8
columns. As before, the “L” means labels for these columns will be provided.
The last entry here is the flag for missing data. A “0” means there is no
missing data in the matrix.

After the header line, the spacing and line breaks are irrelevant as the data are
read in as a single stream of whitespace-delimited tokens. This allows some
flexibility in the actually formatting of the file. Here the row labels for all objects
are placed on a single line. This is followed by the column labels. Again, on a
single line. Finally, the actual data are provided.

The following is an example of a matrix containing the 3D coordinates of
vertices of two cubes. No column labels are provided. Here, the “1” for the
missing data flag indicates there is missing data in the matrix, and this is
followed by the actual missing data value. This can either be a string or a
numerical value. In this case, the number 999 for any coordinate is interpreted
as indicating the point is missing. Individual point coordinates are split with
linebreaks and blank lines to separate individual objects:

" Some cubes with missing data.
1 2L 24 1 999
ONE TWO

-0.20 -0.20 0.00
 999 999 999
 0.80 0.80 0.00
-0.20 0.80 0.00
-0.20 -0.20 1.00
 0.80 -0.20 1.00
 0.80 0.80 1.00
-0.20 0.80 1.00

0.15 0.00 0.00
1.65 0.00 0.00
1.65 1.50 0.00
0.15 1.50 0.00
0.15 0.00 1.50
999 999 999
1.65 1.50 1.50
0.15 1.50 1.50

NTSYS supports additional variations of this basic data type, but the above
subset is the only one currently supported by the new Morpheus programs.
Only user variables and landmark data are supported, and the latter are read
in as primary point coordinates.

As mentioned earlier, this is an extremely easy format through which to get

150

new data into Morpheus. One need only cut-and-paste coordinate data for
individuals into an ASCII text file and add the appropriate header as described
above.

151

 13 Surface Formats
Morpheus et al. currently supports the Wavefront (.obj) and Polygon File
Format (.ply) formats. The latter is also known as the Stanford Triangle Format.
Support for additional formats will be added as time and necessity dictate.

 13.1 Wavefront (.obj)
The Wavefront .obj format is a simple, widely-used format for the specification
of polygonal data. The data are stored as human-readable ASCII data, and each
line in the file is begun by a flag specifying the types of data to follow on the
same line. (Lines can be split, but this feature is not currently supported by
Morpheus.)

The current version of Morpheus supports a limited subset of the data types
available in the .obj format specification. Specifically, Morpheus currently
processes only lines beginning with the flags 'v' and 'f' which represent vertex
and polygonal face specifications, respectively. Other lines are skipped when
the file is read for display purposes. However, when a transformation is applied
to the file, itself, these other lines are reproduced in the output file exactly as
they appear in the original.

An example .obj file might look like the following:

a cube
v 0.0 0.0 0.0
v 1.0 0.0 0.0
v 1.0 1.0 0.0
v 0.0 1.0 0.0
v 0.0 0.0 1.0
v 1.0 0.0 1.0
v 1.0 1.0 1.0
v 0.0 1.0 1.0
f 1 2 3
f 2 3 7 6
f 5 1 2 6 7 8 4 1

The 'v's specify the coordinates of the vertices of a cube. The first 'f' indicates a
triangular face between vertices 1, 2, and 3. The second 'f' specifies a
quadrilateral face between vertices 2, 3, 7, and 6. The third 'f' specifies a
polygonal component with eight vertices. Only triangular or quadrilateral faces
are supported by Morpheus, so these points are decomposed into six triangular
facets: (5,1,2), (5,2,6), (5,6,7), (5,7,8), (5,8,4), (5,4,1). If you are familiar with 3D
graphics jargon, the vertices are interpreted as if they represent a “fan array”,
but are decomposed into individual triangular facets to simplify loading.

152

For more information about the format and structures not supported in the
current version of Morpheus see:

http://www.fileformat.info/format/wavefrontobj/egff.htm

 13.2 Polygon File Format (Stanford Triangle Format) (.ply)
The Polygon File Format (or Stanford Triangle Format), indicated by a .ply file
extension, uses an ASCII header to provide detailed information about the
organization and encoding of the surface mesh data. Below is the header and
first few lines of the ASCII version of the Cebus.ply file included in the sample
data. One can see, for instance, that this mesh has 77,492 vertices with
associated color attributes (reg, green, blue, and alpha (=transparency)) and
149,999 faces.
ply
format ascii 1.0
comment VCGLIB generated
element vertex 77492
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue
property uchar alpha
element face 149999
property list uchar int vertex_indices
end_header
-8.49797 -81.3537 -63.2458 196 153 108 255
-8.46739 -82.6942 -64.1661 194 148 99 255
...

The ASCII versions .ply files are human readable, but suffer from the large size
required for ASCII encoding. Much storage space can be saved by using binary
encoding for the actual coordinate and other data. The header and initial
characters (which are simply translations of the binary values of mesh data) of
the same mesh are shown below.
ply
format binary_little_endian 1.0
comment VCGLIB generated
element vertex 77492
property float x
property float y
property float z
property uchar red
property uchar green
property uchar blue

http://www.fileformat.info/format/wavefrontobj/egff.htm

153

property uchar alpha
element face 149999
property list uchar int vertex_indices
end_header
¨˜#¡#µ¢¬ß˚|¬ƒôlˇlz#¡lc•¬
...

The binary example is from the actual file distributed with Morpheus et al. By
comparison, this version takes up around 3 megabytes of storage, while the
ASCII version requires over twice that amount. The .ply files distributed with
Morpheus are of relatively reduced resolution. The space savings of binary
encoding becomes even more apparent with higher-resolution files. For
example, one file with 1.3 million vertices and 2.6 million faces without color is
110 megabytes in size with ASCII encoding and 51.3 megabytes with binary
encoding.

